## 2009

## Transportation Master Plan

## Pleasant Grove <br> Utah's City of Trees

HORROCKS<br>E $N$ G I N E E R S

Approved by City Council on
June 23, 2009
Project \# 0902-047

## Table of Contents

Table of Contents .....
List of Figures ..... iii
List of Tables ..... iv
Executive Summary .....  V
1.0 Introduction ..... 1
2.0 Transportation Goals and Policies ..... 3
Safe Transportation System ..... 3
Corridor Preservation ..... 5
Multi-Modal Approach ..... 5
Improve the Physical Condition and Efficiency of the City's Roads. ..... 6
Circulation Flow ..... 6
Level of Service ..... 8
Quality Image through Streetscape Design ..... 10
Pedestrian and Non-Motorized Circulation ..... 11
Traffic Calming Design ..... 13
Design Circulation and Street Pattern to Support the General Plan Land Use Goals. ..... 14
Preserve Air Quality and Energy ..... 15
3.0 Existing Conditions ..... 17
Existing Socio-economic Conditions ..... 17
Existing Land Use ..... 17
Existing Roadway Inventory ..... 20
Existing Traffic Volumes ..... 22
Existing Traffic Conditions ..... 22
Existing Roadway Jurisdiction ..... 25
Existing Alternative Transportation Modes ..... 27
4.0 Future Conditions ..... 31
Future Socio-economic Conditions ..... 31
Future Land Use ..... 33
Travel Demand Modeling ..... 34
Projected Traffic Volumes and Conditions ..... 34
5.0 Alternatives Evaluation and Guidelines ..... 43
Roadway Functional Classification ..... 43
Huntsman Lane (4000 North) Alternatives ..... 48
Alternative Transportation Modes ..... 50
Signal Inventory ..... 59
Traffic Calming ..... 64
Access Management ..... 66
Corridor Preservation ..... 66
Traffic Impact Studies ..... 68
Agency Coordination ..... 69
Impact Fees ..... 69
Planned Roadway Improvements ..... 70
Public Involvement Process ..... 70
6.0 Potential Funding Sources ..... 73
Federal Funding ..... 73
State Funding ..... 73
Local Funding ..... 74
7.0 Transportation Improvement Program ..... 75
Appendix A: Raw Traffic Data ..... 81
Appendix B: Existing (2009) Synchro Model Output ..... 127
Appendix C: Access Management Guidelines ..... 171
Appendix D: Public Involvement ..... 189
Appendix E: Resolution \& Staff Report ..... 253

## List of Figures

Figure 1 Pleasant Grove City Vicinity Map.............................................................................................. 2
Figure 2 Pleasant Grove City Traffic Analysis Zones (TAZ)..................................................................... 18
Figure 3 Existing (2009) Roadway Functional Classification and Number of Lanes .................................. 21
Figure 4 Existing (2009) Average Daily Traffic Volumes and Level of Service.......................................... 26
Figure 5 Existing (2009) Transit Facilities.............................................................................................. 29
Figure 62040 No-Build Traffic Volumes and Level of Service ................................................................ 36
Figure 7 Citywide 2040 Roadway Master Plan...................................................................................... 37
Figure 8 North Pleasant Grove 2040 Roadway Master Plan................................................................... 38
Figure 9 Southwest Pleasant Grove 2040 Roadway Master Plan ........................................................... 39
Figure 10 Southeast Pleasant Grove 2040 Roadway Master Plan .......................................................... 40
Figure 112040 TMP Improvements Traffic Volumes and Level of Service .............................................. 41
Figure 12 Typical Cross-Sections - Arterial Roads................................................................................. 45
Figure 13 Typical Cross-Sections - Collector \& Local Roads ................................................................... 46
Figure 14 Roadway Functional Classification........................................................................................ 47
Figure 154000 North Alternatives - Do Nothing.................................................................................. 49
Figure 164000 North Alternatives - Previously Approved TMP ............................................................ 49
Figure 174000 North Alternatives - Widening..................................................................................... 50
Figure 184000 North Alternatives - Realignment................................................................................ 50
Figure 19 Bicycle \& Pedestrian Facilities .............................................................................................. 54
Figure 20 Future Transit Plans ............................................................................................................ 55
Figure 21 Signal Inventory ................................................................................................................... 60
Figure 22 Typical Roundabout Design .................................................................................................. 63
Figure 23 Transportation Improvement Program.................................................................................. 80

## List of Tables

Table 1 Examples of Land Use Thresholds that Require Traffic Impact Studies ......................................... 10
Table 2 Existing (2009) Socio-Economic Conditions.................................................................................. 19
Table 3 Freeway LOS Capacity Criteria (Maximum Volume) .................................................................... 22

Table 4 Arterial LOS Capacity Criteria (Maximum Volume)....................................................................... 22

Table 5 Collector LOS Capacity Criteria (Maximum Volume)..................................................................... 22

Table 6 Signalized \& Unsignalized Intersection LOS Criteria ..................................................................... 23

Table 7 Future (2040) Socio-Economic Conditions ................................................................................. 32

Table 8 Functional Classification Planning and Design............................................................................ 44

Table 9 Functional Classification Operations.......................................................................................... 44
Table 10 Intersection Curb Radii Chart..................................................................................................... 44

Table 11 Trail Descriptions.................................................................................................................. 53
Table 12 Pleasant Grove City Transportation Improvement Program .................................................... 76

## Executive Summary

Similar to the overall growth in Utah County, Pleasant Grove has also experienced rapid residential and commercial growth in recent years. The Bureau of the Census reported a total population of 23,468 for the City in the year 2000. In July of 2007, it estimated a population of 31,552. That growth amounts to an increase over the seven year period of just slightly more than 34 percent, or almost 5 percent annually. As far as future growth is concerned, the Governor's Office of Planning and budget projects a population of 34,446 in 2010, 42,877 in 2030, and 52,600 in 2050 for Pleasant Grove City.

Due to this expansive growth, many of the transportation facilities throughout the City are experiencing increasing congestion and may soon become overwhelmed. Other new transportation facilities will be needed in addition to improving existing facilities.

Recognizing the need to update the Transportation Master Plan (TMP) to accommodate the future development throughout and around the City, travel demands that will result from the planned land uses outlined in the City's General Plan were modeled and documented. The results of that modeling process were used to make plans regarding future transportation improvements. This TMP is a culmination of the master plan update process and is intended to guide the City's transportation system for the next several years.

The TMP discusses the various elements of transportation in Pleasant Grove City, including traffic volumes and conditions, roadway functional classification, typical street sections, alternative transportation modes, traffic signals, access management, corridor preservation, capital improvements, and more. Important items from the TMP are summarized in the following paragraphs.

## Roadway Elements

To accommodate growth expected to occur throughout the City and simultaneously maintain the quality of life desired by the city residents, several revisions were made to the City's existing transportation master plan. The updated roadway plan (Figure 7) outlines the roadway functional classifications; number of lanes; typical cross-sections; right-of-way required to accommodate future traffic in the year 2040 on each roadway; and locations for intersection improvements. In addition to the above, the TMP:

- Outlines typical cross-sections to be applied to each roadway functional classification;
- Provides guidance on how to ensure safety as a primary goal in the design and operations of the City's roadways;
- Discusses the implementation of different traffic calming measures;
- Describes proper access management guidelines and procedures;
- Expounds on traffic impact study requirements for developers;
- Summarizes the practice of preserving future transportation corridors, coordinating with other agencies, and implementing impact fees to developers; and
- Provides guidance on alternative modes of transportation such as public transit, bicycle, and pedestrian facilities.


## Alternative Transportation Elements

To provide a well balanced transportation system in Pleasant Grove, the City will encourage and develop transportation alternatives to the automobile. As the City grows and develops, alternative transportation elements such as public transit and bicycle/pedestrian facilities will play an increasing role in the overall transportation system. This TMP discusses future opportunities to encourage alternative modes of transportation throughout the City including car pooling, park-and-ride lots, local UTA bus routes, bus rapid transit, commuter rail transit, and bicycle, pedestrian, and equestrian plans.

## Other Transportation Related Elements

In addition to the roadway and alternative transportation elements, this TMP addresses other transportation related elements such as safety, traffic calming, access management, and corridor preservation.

Safety is a primary concern to the TMP as well as forecasting traffic growth and providing adequate facilities to meet needs as they arise. To make sure safety concerns are addressed, the City will construct and maintain its transportation facilities in compliance with applicable design and engineering standards.

The City can implement several types of traffic calming measures to reduce speeds on residential and commercial roadways. In summary, those measures include the use of traffic control devices, actual street modification, and ultimately route modification where deemed necessary. There are appropriate situations and locations where traffic calming can be used; however, the City must be cautious and organized in developing and implementing a traffic calming program, or more problems could result than are solved. The general approach involves conducting an engineering study to determine the nature and extent of the traffic problems with guidelines for traffic calming measures to address the identified problems. Once a traffic calming measure is selected, the City will implement it on a temporary basis and monitor it to evaluate the success of the treatment. Details of the different types of traffic calming measures and implementation are outlined in this TMP.

Access management principles include controlling the location, amount, spacing, and type of driveways and intersections on arterial and collector streets. Managing access design will minimize traffic conflicts and maximize the capacity of major travel routes. This TMP provides access management guidelines for the City to use as more development occurs.

Corridor preservation allows a city to identify and protect land from development that is needed for future transportation facilities. New roads are needed to accommodate future transportation demands. Through corridor preservation practices, the City will be able to preserve and protect land that the City needs for future transportation facilities. These practices include exactions, developer incentives and agreements, fee simple acquisitions, transfer of development rights and/or densities, land use controls,
and purchases of options and easements. By preserving these corridors now (securing future right-ofway), the City will ultimately lower the cost and impact of these facilities.

## Transportation Improvement Program

The Transportation Improvement Program (TIP) indicates which transportation improvements will be needed and prioritizes their implementation schedule. Each improvement is given a planning level cost estimate and a time frame for its implementation. Improvements are separated into short range ( 0 to 5 years), medium range ( 5 to 10 years), and long range ( 10 to 20 years) time frames. Improvements are shown graphically in Figure 23 and described in Table 12. Even if an improvement is shown in the TIP, the City is not obligated to implement that improvement. The City will determine the actual implementation of facilities as well as funding for each project on a case by case basis as the City works through the annual budgeting process.

Pleasant Grove City intends this TMP to be a living document that the City will use to plan and guide the development of its transportation system in a timely and efficient manner. Since many aspects of this TMP are primarily developer driven, the City will update the TMP as the City grows and changes. Significant land use changes or fluctuation in population could alter the need for or timing of improvements identified in the TIP. As a result, the City will review and update the TMP on a regular basis. Significant reviews will be performed at least every two to three years. This will ensure that the TMP reflects the values and growth of Pleasant Grove City and serves its intended purpose for many years to come.

### 1.0 Introduction

Pleasant Grove City is located in northern Utah County along the Wasatch Front. Its adjacent neighboring cities include American Fork, Lindon, and Cedar Hills. A vicinity map of the City is shown in Figure 1.

Pleasant Grove City has a considerable amount of developable land within the City limits, which will allow it to grow well beyond its current population. Similar to the overall growth in Utah County, Pleasant Grove has also experienced rapid residential and commercial growth in recent years. For example, the Bureau of the Census reported a total population of 23,468 for the City in the year 2000. By July of 2007, it had estimated the City's population to be 31,552, which amounts to an increase over the seven year period of just slightly more than 34 percent, or almost 5 percent annually.

Due to this expansive growth, many of the transportation facilities throughout the City are experiencing increasing congestion and may soon become functionally obsolete and in need of improvements. The City will need other new transportation facilities on the outskirts of the City as a result of new growth in those areas.

The last update to the City's transportation element of the General Plan was completed in 2007. The City recognizes the need to update the Transportation Master Plan (TMP) to accommodate the future travel demand as the City grows. This TMP is a part of the master plan update process and is intended to guide the City's transportation system for the next several years.

The TMP discusses the various elements of transportation in the City, including traffic volumes and conditions, roadway functional classification, typical street sections, alternative transportation modes, traffic signals, access management, corridor preservation, and capital improvements.


### 2.0 Transportation Goals and Policies

This section of the TMP outlines the general transportation desires of the City and will assist City leaders, planners, engineers, and land developers in developing transportation guidelines, standards, and solutions that reflect the unique characteristics of the City. City staff and leaders will use these goals and policies to evaluate transportation alternatives that are not specifically addressed in the City's TMP to assure that any alternatives be in harmony with the City's transportation needs and desires. The City's Transportation Goals and Policies are outlined as follows:

## Safe Transportation System

## Background:

Automobile accidents are one of the leading causes of injury and death in the United States. While we often freely accept the trade-off of increased exposure to accidents versus travel conveniences when we use automobiles, there is an inherent trust in the public infrastructure to comply with reliable safety standards.

## Goal:

Set safety of the transportation system as a high priority and work diligently to meet applicable safety standards.

## Strategies and Actions:

A. Strategy: Require all major subdivision developments to provide multiple entrances for emergency vehicles. The City will require a secondary access for all projects with roadways lengths greater than 1,000 feet.

Action: The Planning Department will implement this requirement during the site plan review process.
B. Strategy: Provide pedestrian crossings for children, particularly near schools and recreation areas. Encourage development of school routing plans and recreation plans which minimize vehicle/pedestrian conflicts.

Action: Involving the School District, PTA, City Public Works, and Engineering Department, conduct an annual review of the safe walking routes. The Engineering and Planning

Departments will work with the School District to plan future school locations and walking routes within the existing municipal and annexation policy declaration boundaries consistent with the transportation system.
C. Strategy: Establish speed limits based on traffic engineering analysis and enforce speed limits, especially near schools and in residential areas.

Action: The Engineering Department will complete speed studies for areas of concern and law enforcement agencies will enforce safe speeds. The City will maintain a logical progression of speed limit areas such that similar areas and street types are consistent in speed limitations.
D. Strategy: Improve guidance of traffic on streets through striping, raised medians and islands, reduction of roadside obstructions, and other traffic engineering solutions.

Action: The Engineering Department will review intersections and developments that are problem areas for possible traffic channelization solutions.
E. Strategy: Require all roadway features to meet minimum design standards established by the American Association of State Highway and Transportation Officials (AASHTO). All signs, pavement markings, and traffic signals must meet standards established by the Manual of Uniform Traffic Control Devices (MUTCD).

Action: The Engineering Department will enforce and follow current design standards during the design review process.
F. Strategy: Upgrade or install pedestrian safety features at intersections and crossings areas as deemed necessary by City Staff which may include but are not limited to:
a. Warning lights and audible signals at high volume intersections
b. ADA ramps at all crossing areas
c. Street lights on both sides of the street at mid-block crossings and flashing beacons where feasible (Note: The City will minimize the establishment of mid-block crossings where possible.)
d. Raised median pedestrian refuge where feasible on roadways with four or more lanes
e. Stricter enforcement of jay-walking through signage and increased monitoring
f. Optimal sidewalk conditions for walking and wheelchairs through repairing cracks and bumps, minimizing slopes, and maintaining visibility at corners

Action: City Staff will conduct a regular review of pedestrian facilities throughout the City.

## Corridor Preservation

## Background:

Corridor preservation allows a city to identify and protect land from development that is needed for future transportation facilities.

## Goal:

Plan sufficiently for the future needs of community wide transportation systems.

## Strategies and Actions:

A. Strategy: Preserve future corridor locations and secure right-of-way using innovative methods including: exactions, developer incentives and agreements, fee simple acquisitions, transfer of development rights and/or densities, land use controls, and purchase of options and easements.

Action: Involve the local, regional, and state agency participation in developing the goals of the plan. Implement the projects planned in the City's Transportation Improvement Program (TIP). The City will thoroughly review and update the TMP and TIP on a regular basis, at least every two to three years.

## Multi-Modal Approach

## Background:

The private automobile is presently the most common and convenient form of transportation. However, the City needs to plan for all types of transportation to meet all the needs of the community and to establish a more desirable urban environment. Alternative modes of transportation primarily include such modes as public transit, walking, and bicycling. Alternative modes of transportation can assist in reducing vehicular congestion and delay, as well as reduce overall pollution emissions from vehicular traffic.

## Goal:

Provide for effective connections and community use of mass transit systems in and near the City. Provide a balanced multi-modal approach to transportation problems which considers mass transit, car pools, and other alternative modes to the single occupant automobile.

## Strategies and Actions:

A. Strategy: Develop and continually update a long range mass transit plan for the City as part of the City's TMP.

Action: Plan for future light rail service and transit-oriented development in the downtown and other strategic locations.

Action: Encourage transit and multi-modal facilities by improving bus stops.

Action: Require developers of new commercial developments to consider transit and other multi-modal service in their design of parking facilities, roadways, and pedestrian access.

Action: Work with UTA to establish new transit routes throughout the City and to develop bus stop and park-and-ride requirements for office and commercial land uses.

Action: Support implementation of park-and-ride lots and encourage the development of high frequency, express transit services.

## Improve the Physical Condition and Efficiency of the City's Roads

## Background:

Roads require consistent monitoring and maintenance to avoid unnecessary ware and tare. Pavement conditions, vegetation overgrowth, signing \& striping conditions, etc. should all be monitored regularly to address deficiencies in a timely manner to avoid further deterioration.

## Goal:

Maintain an efficient roadway network through regular monitoring and maintenance programs.

## Strategies and Actions:

A. Strategy: Widen, improve, and complete unfinished streets, and install streets where there are high traffic demands.

Action: Program street overlay improvements to repair all old and damaged roads. Plan for and complete the projects in the City's TIP.
B. Strategy: Provide funding for needed road improvement projects.

Action: Set aside funds for needed road improvements each budget year.
C. Strategy: Work with the railroad and other agencies to set target dates for improvements to railroad crossings.

Action: Repair all roadways where there are railroad crossings.

## Circulation Flow

## Background:

Pleasant Grove, as many other cities throughout the Wasatch Front, has established its street network on a grid system. In order to provide proper circulation flow on this grid system, the

City has established a hierarchy of roadway functional classifications. Continuity in the defined functional classification of roadways needs to occur between adjacent jurisdictions. Discontinuity in the functionality of each roadway can cause confusion and congestion on the street network. Each roadway needs to serve a distinct function and purpose.

## Goal:

Design transportation facilities to assure efficient traffic flow throughout the City with compatible connections to regional transportation systems.

## Strategies and Actions:

A. Strategy: The City's TMP is designed to have a hierarchy of streets compatible with the land use the street system serves.

Action: Abide by the hierarchy of streets identified in the TMP (Figure 7). The City will follow corridor preservation techniques to preserve the right-of-way necessary for the different street classifications (Figure 12 and Figure 13).
B. Strategy: The principle function of arterial streets is to move large volumes of through traffic on a continuous route over a substantial distance. To ensure that arterial streets function properly, the City will implement and enforce access management principles and standards (as outlined in the appendix), as well as parking restrictions.

Action: The Planning and Engineering Departments will implement and enforce these standards.
C. Strategy: The street system shall include a hierarchy based on vehicle usage. The TMP expects trucks to stay on designated truck routes, which are primarily limited to arterial streets.

Action: Develop and pass a truck route ordinance mandating trucks to travel on designated truck routes and that roadway designs provide adequate turning radii at intersections based on the specific roadway classifications (Table 10). In addition, the Engineering Department should develop a signage system that would inform heavy vehicle operators to drive on designated truck routes. The Planning Department will ensure that land uses requiring truck delivery are located along roadways that can accommodate trucks.
D. Strategy: Minimize traffic speeds on local streets by providing direct routes to collector streets, and verify that street designs are compatible with street functions.

Action: Require major housing units, commercial developments, and major public buildings to have direct routes onto arterial and collector roads to minimize their impacts on the community. In addition, the City needs to mandate, through ordinance, requiring the conduct of a traffic impact study for these types of developments. Both the Planning and Engineering Departments will work with all new developments during the review process to ensure proper design that is in conformance to the standards set in the City's TMP.
E. Strategy: Require access to any new residential development be provided via a local road or an appropriate on-site circulation roadway system. Where feasible, the City will not allow new residential development to face collector or arterial streets in order to preserve and maintain the functionality and mobility of the major roadways throughout the City. The City will follow the access management standards as outlined in the appendix of this document.

Action: The Planning and Engineering Departments will enforce these requirements.
F. Strategy: Establish a hierarchy of streets by classifying all new roads according to their function and purpose.

Action: Classify any new roads according to their function and purpose.
G. Strategy: Provide for internal circulation to occur within the City by designing a functional hierarchy of streets to assist in dispersing traffic. This hierarchy of streets will incorporate a broad network of arterial streets with smaller internal networks of collector and local roads.

Action: Ensure that a series of roadways within commercial districts are established to allow for the dispersal of traffic thereby reducing congestion. Require residential subdivisions to have a minimum of two access connections to neighboring subdivisions or streets. The City will require that residential areas are interconnected with adjacent neighborhoods to prevent children from traveling on arterial and collector streets to reach nearby neighborhoods and schools.
H. Strategy: Design a circulation system to accommodate regional transportation needs.

Action: The Engineering Department is responsible for obtaining updated information regarding projected traffic volumes and regional transportation plans affecting the City at least annually, or as information is available from both MAG and UDOT.

## Level of Service

## Background:

Level of Service (LOS) is a traffic engineering term for describing and measuring the level of travel delay experienced by vehicles. LOS ranges from free-flow traffic conditions (LOS A) to extremely congested travel (LOS F). Since traffic and overall travel is generally most congested at morning and afternoon peak periods, typical practice generally allows for some driver discomfort during these peak periods while providing better LOS throughout the remainder of the day.

## Goal:

Improve traffic flow and circulation to major activity centers in the City. Provide a street system that operates at an acceptable Level of Service (LOS) standard during peak-hour periods.

## Policies and Implementation:

A. Strategy: Provide streets that at a minimum operate so that the average travel speeds would be no lower than about 40 percent of the free-flow speeds. Also, provide intersections that operate at a LOS of C (minimum average) during the peak hour (i.e., an average delay of less than 35 seconds per vehicle at signalized intersections and less than 25 seconds per vehicle at unsignalized intersections). Exceptions to these standards may be made in instances where the associated impacts of the improvements needed to bring the facility up to standard are disproportionate to the benefits and funding to implement the improvements is not available.

Action: Adhere to the year by year improvement project list in an effort to reduce congestion on arterial streets and at intersections.
B. Strategy: Improve the efficiency of streets and reduce potential traffic conflicts through the use of improved or new signals, signing, pavement markings, and street lighting.

Action: Adhere to the year by year project list that improves signals, signs, pavement markings, and street lighting.
C. Strategy: Work with businesses to explore non-traditional methods for reducing traffic volume through travel demand management and system management strategies.

Action: Develop programs that provide a mix of land uses with differing peak traffic periods, provide incentives for rideshare systems, and encourage flex-time work schedules, parking management, telecommuting, and transit ridership incentives. The Engineering and Planning Departments will implement such programs as development warrants.
D. Strategy: Plan future streets for the width necessary to serve projected traffic at an acceptable LOS as identified above. Require development to protect, preserve, and donate needed street width. Figure 12 and Figure 13 show the desired typical cross-sections for the different roadway classifications.

Action: The Engineering Department will mandate a Traffic Impact Study (TIS) be performed for every new development that would generate more than 100 peak-hour trips. Table 1 outlines some examples of minimum thresholds for different land uses that would require a TIS to be performed. The City will collect traffic impact fees that are directly proportional to the impact of a development on the collector and arterial roadways.

Table 1 Examples of Land Use Thresholds that Require Traffic Impact Studies

| Land Use | Size of Development that Generates $\geq 100$ Peak-Hour Trips |
| :--- | :---: |
| Residential (Single Family Homes) | 90 Units |
| Residential (Apartments) | 150 Units |
| Residential (Condos/Townhomes) | 190 Units |
| Residential (Mobile Home Park) | 170 Units |
| Shopping Center | 6,000 Sq. Ft. of GLA |
| Fast-Food Restaurant with Drive-In | 3,000 Sq. Ft. of GFA |
| Gas Station with Convenience Store | 7 Fueling Positions |
| Bank with Drive-In | 2,000 Sq. Ft. of GFA |
| General Office | 67,000 Sq. Ft. of GFA |
| Medical/Dentist Office | 29,000 Sq. Ft. of GFA |
| Research and Development Facility | 71,000 Sq. Ft. of GFA |
| Light Industrial/Warehousing | 185,000 Sq. Ft. of GFA |
| Manufacturing Plant | 144,000 Sq. Ft. of GFA |
| Park-and-Ride Lot with Bus Service |  |
| Source: ITE Trip Generation Manual (7 |  |
| GLA | Edition) |

## Quality Image through Streetscape Design

## Background:

The sense of community is often defined by both the driver's perspective passing through an area as well as the resident's observation living and working in an area. Communities establish a sense of pride by creating a vision to define a unique and positive image of and for the community.

## Goal:

Consider aesthetics in the design of each of the different roadway classifications to enhance the overall image of the City. Achieve a higher standard for street beautification, function and safety.

## Strategies and Actions:

A. Strategy: Require all new developments to plant trees in the park strips as part of the landscaping. The City will identify main thoroughfares where landscaping beautification will benefit the community, explore alternative landscaping options for better visibility and safety, coordinate with Public Works to insure maintenance needs are addressed, and use flexible street design to accommodate existing mature trees.

Action: Require all new developments to plant trees and landscape the medians and park strips and to provide for water and other maintenance needs of the landscaped areas.

Action: Create a list of approved park strip trees to ensure that tree roots do not create maintenance problems.
B. Strategy: Upgrade and beautify sidewalks and other walkways to create a functional, but aesthetically pleasing pedestrian streetscape. Create pedestrian rest stops with places for park benches and additional landscaping. Explore alternatives for standard waste receptacles.
C. Strategy: Streetscape design needs to reflect and enhance the adjacent land use. Size and type of trees and width of park strips can vary according to need.

## Pedestrian and Non-Motorized Circulation

## Background:

The scale of a community is best expressed and further enhanced through short, slow-speed trips within the city as opposed to trips which go through the city. Pleasant Grove will support the use of pedestrian and bicycle travel as alternatives to the private automobile.

## Goal:

Achieve a more walkable community. Support and encourage bicycle, pedestrians and other non-motorized travel within the City. Coordinate with adjacent jurisdictions to offer continuous routes for travel and recreation between communities.

## Strategies and Actions:

A. Strategy: Increase connectivity and efficiency of bicycle and pedestrian facilities along all major arterial and collector streets.

Action: Keep the City's bicycle and pedestrian facilities master plan current.
B. Strategy: Create a balance between bicycle and pedestrian facilities to satisfy both the transportation and recreational needs of residents.

Action: Improve bicyclist and pedestrian access to parks, recreation centers, mass transit facilities, schools, and other activity destinations by requiring the incorporation of bicycle and pedestrian facilities into private development plans.

Action: Require sidewalks of sufficient width on both sides of all roads. The City will vigorously enforce this standard on arterial roadways and within commercial areas with exceptions granted on a case by case basis.

Action: In developing bicycle and pedestrian facilities, it is important that these facilities lead to somewhere, are as direct as possible, and that they are interconnected with each other.

Action: Coordinate with school districts on existing and future new school locations relative to student bicycle and pedestrian issues.

Action: Assure that bicycle and pedestrian facilities are incorporated into roadway and mass transit construction project plans, since it is much more difficult and more expensive to retrofit bicycle and pedestrian facilities to existing roads and transit facilities.

Action: Encourage the development of multi-use trail facilities in the City's urban environment, since they are more practical and efficient.

Action: Coordinate with UDOT on new state road construction projects relative to bicycle and pedestrian facilities, such as State Street and Main Street (Geneva Road).

Action: Coordinate with UTA on any new projects and facilities they own regarding bicycle and pedestrian issues.
C. Strategy: Encourage alternative modes of transportation through carefully developed support systems.

Action: Work with local businesses to offer better access for bicycles and improved security for storage.

Action: Encourage employers to provide lockers and showers for employees who walk or cycle to work.

Action: Work with UTA in establishing bike-and-ride facilities at bus stops, car pool lots and park-and-ride lots.

Action: Create continuous bicycle paths/routes between residential, commercial and other areas.

Action: Pave the shoulders of roadways that are unpaved and that are designated to accommodate bicycle lanes or a route. The City will ensure that space is provided for bicycle lanes, or in the case of a route, a wider outside general purpose lane (14 feet).

Action: Create a safer environment for bicyclists and pedestrians through proper location and design of sidewalks, bike lanes, multi-use trails, and other bicycle and pedestrian facilities.

Action: Coordinate with the adjacent communities, such as Lindon, American Fork, and Cedar Hills (as well as the Forest Service) on bicycle and pedestrian standards; and so that the City's bicycle and pedestrian facilities will have a greater likelihood of interconnecting with the facilities of the adjacent community.

Action: The City will conduct planning/engineering studies for its planned bike, pedestrian, and other trail facilities for purposes of locating, designing, and acquiring right-of-way for these facilities.

Action: The City and the Murdock Canal Company will work together in developing and executing an agreement to formally make available a portion of the canal right-of-way for the development of a multi-use trail, which would include equestrian use.
D. Strategy: Maintain Safety and accessibility of pedestrian walkways.

Action: Develop a maintenance program for sidewalk cleaning, clearance, and snow removal with a clear division of City and citizen responsibility.

Action: Develop a program for sidewalks that includes an inventory of the condition of the City's sidewalks and an identification of where there are gaps (lack of sidewalks) in the existing sidewalk network.

Action: Determine priorities for sidewalk replacement and new construction on the basis of sidewalk conditions and safety.

Action: In areas of highest need, annually allocate resources in order to replace inadequate sidewalks and construct new sidewalks in areas where there are gaps in the network.

## Traffic Calming Design

## Background:

Traffic calming design encourages the reduction of speeds and vehicle volumes through the manipulation of roadway design elements. Design elements include roadway width, alignment of streets, and connectivity to adjacent streets. Traffic calming is most warranted on residential streets and in other high pedestrian use areas.

## Goal:

Encourage slow speeds through residential neighborhoods and in the downtown area by implementing traffic calming techniques where necessary.

## Strategies and Actions:

A. Strategy: Geometrically design new residential streets to avoid excessive speeds.

Action: Vary street widths and patterns to encourage or discourage through traffic where appropriate.

Action: Employ stop controlled intersections or roundabouts spaced no farther than 1000 feet apart for residential streets.

Action: Maintain traffic connections that do not over utilize residential routes.

Action: Restrict residential roads to a maximum length of 1,300 feet and connect both ends to either a Local Road or Collector Road.

Action: Limit the maximum length of a cul-de-sac to 400 feet. Loop or circle streets are preferred to cul-de-sacs to maintain circulation and emergency access.
B. Strategy: Local neighborhood streets need to provide vehicular and pedestrian access to all land parcels.

Action: Reduce speeds on downtown and residential streets to 20 miles per hour.
Action: Create a City-wide traffic calming plan including justification, warrants, standards, and specifications for the various traffic calming measures.

## Design Circulation and Street Pattern to Support the General Plan Land Use Goals

## Background:

A relationship exists between the type of land uses and the volume of traffic that travels on streets. Therefore, the City will design circulation and street patterns that are compatible to existing and future land use goals.

## Goal:

Design and plan the City's transportation system so that it can serve as a tool in implementing the General Plan's Land Use Goals.

## Strategies:

A. Strategy: Low speed and minimal traffic in residential neighborhoods improves quality of life. Thus, the City should minimize vehicular traffic on these streets through the use of traffic calming measures where necessary.
B. Strategy: Restrict large retail developments to areas adjacent to arterial streets which are designed to facilitate large traffic volumes. The City will use zoning and other land use regulatory tools to restrict commercial developments to property facing arterial streets.
C. Strategy: Coordinate land use and transportation elements of the general plan to insure complimentary goals and policies.

## Preserve Air Quality and Energy

## Background:

An efficient transportation system contributes to a decrease in the amount of pollution and consumption of energy that is associated with most forms of transportation. Therefore, an efficient street network that reduces the amount of time vehicles idle at intersections is in the best interest of residents of the City. Using non-motorized travel is another way to reduce pollution and energy consumption.

## Goal:

Where possible, the transportation plan will investigate innovative methods of preserving air quality and conserving valuable energy resources.

## Strategies:

A. Strategy: Improve intersection design and traffic signal timing plans to reduce vehicular stop time at major intersections throughout the City. Coordinate traffic signals along arterials to reduce delay experienced by through traffic.
B. Strategy: Create a street system that moves automobile traffic efficiently through City streets by:
a. Securing right-of-way that is necessary to accommodate future traffic volumes.
b. Requiring traffic impact fees that are proportionate to the traffic impacts that development will produce.
c. Encouraging mixed use developments to decrease vehicle trips during peak hours.
C. Strategy: Encourage other methods of travel within the City by constructing trails and larger sidewalks.
D. Strategy: Encourage public awareness and participation in emission reduction programs.

### 3.0 Existing Conditions

A thorough documentation of the existing conditions was performed in order to evaluate the City's transportation system and update the TMP to address the City's current and future needs. In order to evaluate existing conditions, the following data were collected and analyzed: existing socio-economic conditions, existing land use, existing roadway inventory (including lane configurations, functional classification, intersection control, etc.), existing traffic volumes, existing traffic conditions (Level of Service, etc.), existing roadway jurisdiction, and existing alternative transportation modes (transit, pedestrian, and bicycle facilities). This data forms the basis for analyzing the existing transportation system as well as provides the foundation for future traffic projections.

## Existing Socio-economic Conditions

Socio-economic data consists of statistics including population, employment (number and type of jobs including retail, industrial, and other), and number of households associated with a particular area or zone. These statistics were obtained from the Mountainland Association of Governments (MAG) and reviewed by the City for accuracy. The MAG travel demand model uses these statistics to predict the number of trips traveling to and from each Traffic Analysis Zone (TAZ) defined by the model. Since MAG's travel demand model serves the primary purpose of forecasting traffic volumes and level of service on a regional level, the model was modified by dividing up some of the regional TAZ into smaller local TAZ throughout the City to more accurately estimate the travel demand characteristics on a local level. These newly divided up TAZ can be seen in Figure 2. A summary of the corresponding socioeconomic data for each of these zones is found in Table 2.

## Existing Land Use

Traffic volumes and patterns are directly related to land use and development density. In order to develop an accurate travel demand model, a thorough review of existing land uses throughout the City was conducted and the model subsequently calibrated to represent existing traffic conditions. This included identifying and quantifying the various land uses throughout the City.


Table 2 Existing (2009) Socio-Economic Conditions

| TAZ Number | Population (persons) | Employment (jobs) | Dwelling Units (units) |
| :---: | :---: | :---: | :---: |
| 179 | 8 | 222 | 3 |
| 180 | 34 | 27 | 9 |
| 181 | 1180 | 43 | 312 |
| 182 | 577 | 154 | 199 |
| 183 | 131 | 252 | 52 |
| 184 | 61 | 118 | 25 |
| 185 | 350 | 367 | 99 |
| 186 | 356 | 373 | 101 |
| 187 | 120 | 126 | 34 |
| 188 | 59 | 40 | 17 |
| 189 | 88 | 60 | 25 |
| 190 | 108 | 74 | 31 |
| 191 | 326 | 628 | 129 |
| 192 | 214 | 411 | 85 |
| 193 | 337 | 12 | 97 |
| 968 | 973 | 14 | 264 |
| 969 | 417 | 73 | 126 |
| 970 | 497 | 196 | 161 |
| 971 | 936 | 140 | 273 |
| 972 | 834 | 125 | 243 |
| 973 | 899 | 135 | 262 |
| 974 | 1046 | 449 | 257 |
| 975 | 1043 | 448 | 256 |
| 976 | 337 | 6 | 86 |
| 977 | 1365 | 28 | 324 |
| 978 | 598 | 11 | 152 |
| 979 | 856 | 21 | 237 |
| 980 | 885 | 22 | 245 |
| 982 | 521 | 12 | 133 |
| 984 | 370 | 9 | 95 |
| 985 | 248 | 24 | 63 |
| 986 | 449 | 43 | 114 |
| 988 | 274 | 176 | 109 |
| 1012 | 2505 | 235 | 633 |
| 1054 | 604 | 14 | 154 |
| 1055 | 1421 | 29 | 337 |
| 1056 | 604 | 11 | 154 |
| 1057 | 883 | 22 | 244 |


| TAZ Number | Population (persons) | Employment (jobs) | Dwelling Units (units) |
| :---: | :---: | :---: | :---: |
| 1058 | 1036 | 445 | 254 |
| 1068 | 184 | 193 | 52 |
| 1069 | 1389 | 208 | 405 |
| 1070 | 1058 | 418 | 342 |
| 1071 | 1104 | 193 | 332 |
| 1072 | 1370 | 23 | 349 |
| 1073 | 1112 | 15 | 302 |
| 1074 | 370 | 14 | 106 |
| 1075 | 395 | 2 | 106 |
| 1076 | 504 | 6 | 172 |
| 1077 | 870 | 105 | 298 |
| 1078 | 414 | 0 | 145 |
| 1079 | 91 | 527 | 36 |
| 1080 | 1232 | 328 | 425 |
| 1081 | 2086 | 333 | 558 |
| 1082 | 1159 | 43 | 306 |
| 1086 | 1742 | 1513 | 483 |
| 1296 | 2 | 69 | 1 |
| 1297 | 2 | 224 | 1 |
| 1298 | 7 | 196 | 2 |
| 1299 | 141 | 115 | 38 |
| 1392 | 167 | 113 | 47 |
| 1393 | 252 | 265 | 71 |
| 1396 | 196 | 378 | 78 |
| TOTAL: | 39,397 | 10,876 | 11,049 |

## Existing Roadway Inventory

The existing number of lanes and the current functional classification of each roadway were collected from field visits, aerial photography, the City's previous TMP, and transportation plans from surrounding jurisdictions. The results of that existing roadway inventory are shown in Figure 3. In addition, the type of intersection control and existing auxiliary lanes for all major intersections was documented. All of this data was used to model and analyze existing traffic conditions throughout the City.


## Existing Traffic Volumes

In order to evaluate roadway capacities, calibrate the travel demand model, and identify existing deficiencies in the roadway system, existing (2006-2009) traffic volumes were collected on numerous key roadway segments. These counts were obtained from a variety of sources, including UDOT's Average Daily Traffic (ADT) volumes, traffic counts performed for previous traffic studies in the area, and manual traffic counts collected at 28 different intersections throughout the City. Where necessary, these counts were adjusted up to the year 2009. The raw traffic data collected is provided in the appendix.

## Existing Traffic Conditions

A term used to describe the traffic operations on roadways and at intersections is Level of Service (LOS). While there are different methodologies available to calculate LOS, the most commonly used methods are found in the Highway Capacity Manual (HCM) published by the Transportation Research Board. The HCM defines six different levels of LOS ranging from LOS A to LOS F; LOS A represents free-flow conditions while LOS F represents extremely congested traffic conditions. For this analysis, two different types of LOS were used to evaluate the roadway network: Roadway LOS and Intersection LOS. A discussion of these different types of LOS is found below.

## Roadway Level of Service

Roadway LOS is used as a planning tool to quantitatively represent the ability for a particular roadway to accommodate the travel demand. As a general rule of thumb and based on previous experience, the following tables were used to estimate the Roadway LOS based on the functional classification, number of lanes, and ADT of each roadway in question:

Table 3 Freeway LOS Capacity Criteria
(Maximum Volume)

| Lanes | LOS C | LOS D | LOS E |
| :---: | :---: | :---: | :---: |
| $\mathbf{4}$ | 60,000 | 70,000 | 89,000 |
| $\mathbf{6}$ | 95,000 | 110,000 | 140,000 |

Table 4 Arterial LOS Capacity Criteria
(Maximum Volume)

| Lanes | LOS C | LOS D | LOS E |
| :---: | :---: | :---: | :---: |
| $\mathbf{2}$ | 10,800 | 12,400 | 16,200 |
| $\mathbf{3}$ | 12,400 | 14,000 | 17,800 |
| $\mathbf{5}$ | 28,600 | 32,900 | 42,100 |

Table 5 Collector LOS Capacity Criteria (Maximum Volume)

| Lanes | LOS C | LOS D | LOS E |
| :---: | :---: | :---: | :---: |
| $\mathbf{2}$ | 9,700 | 11,300 | 14,600 |
| $\mathbf{3}$ | 10,800 | 12,400 | 16,200 |
| $\mathbf{5}$ | 23,200 | 27,000 | 34,000 |

## Intersection Level of Service

Intersection LOS is a more precise method for quantifying traffic operations compared to the Roadway LOS methodology described above. The Roadway LOS looks at the big picture, while the Intersection LOS considers individual vehicular movements within an intersection. Since intersections tend to be the source of bottlenecks within transportation networks, a detailed look into the delay experienced at each intersection is performed. The methodology for calculating this delay is outlined in the Highway Capacity Manual (HCM). The resulting LOS criteria for both signalized and unsignalized intersections are described in Table 6.

Table 6 Signalized \& Unsignalized Intersection LOS Criteria

|  | Signalized | Unsignalized* $^{*}$ |
| :---: | :---: | :---: |
| Level of Service | Average Control Delay (sec/veh) | Average Approach Delay (sec/veh) |
| A | $\leq 10$ | $\leq 10$ |
| B | $>10-20$ | $>10-15$ |
| C | $>20-35$ | $>15-25$ |
| D | $>35-55$ | $>25-35$ |
| E | $>55-80$ | $>35-50$ |
| F | $>80$ | $>50$ |

*Note: The LOS for unsignalized intersections shown in Figure 4 represents the approach with the highest delay.
Even with the rapid growth that has occurred in Pleasant Grove City in recent years, most roadways throughout the City operate at an acceptable LOS at the existing (2009) travel demand (Figure 4). A few areas as shown on the map are experiencing undesirable traffic congestion and delay:

- Pleasant Grove Boulevard from 700 North to approximately 100 South experiences a higher demand than a 3-lane arterial can accommodate at a LOS C or better. The City will widen this section of roadway to a 5-lane arterial street to better handle existing traffic demands.
- The unsignalized intersection at 1300 West and Pleasant Grove Boulevard is failing (LOS F). This is in part due to high demand from 1300 West. Once 2000 West is completed, some of this high demand on 1300 West will move north and south via the new 2000 West corridor, thereby improving overall operations. Regardless of this anticipated decrease in demand, the City will construct a traffic signal at this intersection to help mitigate some of the safety concerns with regards to the lack of sight distance and the past accident history at this intersection.
- 100 East from Center Street to 2600 North carries 12,000 to 15,000 vehicles per day. These current volumes have eroded service to a LOS E \& F. 100 East from Center Street to 200 South operates at a LOS D. The TMP categorizes this facility as a future 5 -lane arterial, which will improve LOS to C or better. While roadway LOS is failing in these segments, all intersections along 100 East are operating at a LOS C or better during the peak hour, with the exception of 100 East \& Center Street.
- The signalized intersection of 100 East and Center Street currently operates at a LOS D with the current phasing and cycle length according to Synchro modeling; however, excessive queues have been observed during the PM peak in the eastbound direction extending as far back as State Street. As a result of this excessive queuing, the intersection is actually failing under reallife operations. The queuing is developing for several reasons. The first is the close proximity to the unsignalized four-way stop-controlled intersection at Center Street \& Main Street. Vehicles traveling eastbound on Center Street are metered by the four-way stop at Main Street. As a result of traffic being naturally metered by the four-way stop and the current extension time for a detection call only being 1.0 second, the eastbound traffic is not receiving adequate phase time. The City will extend the extension time to at least 3.0 seconds to prevent the eastbound phase from gapping out. In addition, the City will retime the signal to provide more time to the eastbound direction during the PM peak. The signal currently has equal splits for all directions, however if the east or westbound approaches do not receive a call from detection, the time is automatically transferred to north and southbound coordinated movements.
- The unsignalized intersection at Main Street and Center Street currently operates at a LOS D. Even though the modeling shows that this intersection operates at a LOS D, the turning movement counts used to model this intersection was collected during the State Street Construction Project and may not accurately represent normal conditions. The City will not make any improvements for this intersection at this time but will, upon the completion of the State Street Construction Project, have additional analysis performed to determine if improvements are needed to meet overall LOS standards.
- Another traffic signal within the City is operating below the acceptable LOS standards, namely State Street \& 2000 West (LOS D). This intersection will likely improve upon completing the 2000 West extension since the existing heavy southbound left turn movement will be reduced as many of those trips are anticipated to move over to the southbound through movement. The City will continue to monitor traffic operations on the north leg of this intersection to verify if additional auxiliary lanes are necessary for optimal LOS. The City will continue to coordinate with American Fork City, UDOT, and MAG regarding widening 2000 West north of State Street as shown on the cities' plans, as well as MAG's 2015 plan.
- The unsignalized intersection at State Street and 200 South currently operates at a LOS D. This intersection operates at a LOS D as a result of high traffic volumes on State Street limiting gaps in traffic for vehicles on 200 South to maneuver. In the future the City will realign the intersection and it will become signalized when signal warrants are met.
- The unsignalized intersection at State Street and 100 East currently operates at a LOS D. 100 East is a major arterial for people coming from north Pleasant Grove and Cedar Hills. With the combination of the high volumes on State Street and 100 East, left-turning vehicles coming off 100 East often experience excessive delay. To provide continuity between the City's arterial roadways and to improve overall traffic operations, the City will realign 100 East and Geneva road to provide for a continuous movement along these two major arterials. In addition, the City
will signalize the new intersection of 100 East, Geneva Road, and State Street at the completion of the realignment. The existing signal at Main Street \& State Street would no longer be needed as a result of this future realignment.
- The unsignalized intersection at Center Street and 300 East currently operates at a LOS D during the peak hour. In order for this intersection to operate at an acceptable LOS, the City will stripe a southbound right-turn lane onto the existing pavement and have parking restricted to accommodate this additional auxiliary lane at this intersection. This would improve the LOS at this intersection by separating the southbound right-turn movement from the southbound through movement.
- Although not shown in Figure 4, a problem exists at the intersection of Center Street \& 600 West. As a result of closely spaced intersections, queues waiting to turn left from Center Street onto 600 West often back up into the intersection of State Street \& Pleasant Grove Blvd resulting in unsafe and inefficient traffic operations. Since this problem will continue to worsen as development occurs, the City will realign Center Street with Garden Drive and realign 600 West with Pleasant Grove Blvd. This will improve the overall safety and operations of these intersections. In addition, by realigning Center Street, the heavily skewed railroad crossing that exists today can be eliminated, thereby again improving overall safety.


## Existing Roadway Jurisdiction

The current street system in and around Pleasant Grove consists of a mixture of state, county, and locally owned and operated roads. This mixture may present challenges when coordinating roadway maintenance and improvement programs between jurisdictions. However, by identifying the different agencies and the roadways each jurisdiction is responsible for, coordination of future improvements is enhanced.


## Existing Alternative Transportation Modes

Public transit is a form of alternative transportation within Pleasant Grove City provided by the Utah Transit Authority (UTA). Figure 5 shows the existing transit facilities that run through the City. As shown in the figure, there are several regional UTA bus routes that run through the City along State Street and other roads with several stops located in downtown Pleasant Grove.

Most of the bus service in Pleasant Grove consists of express bus service whose routes use l-15 and other principle roads. This service is used by Pleasant Grove residents and businesses for access to Salt Lake City and other Salt Lake County locations, as well as Orem, Provo, Payson and other Utah County locations.

The existing UTA bus routes that connect Pleasant Grove with other communities are as follows:
Route 801 - Provo/Orem/Salt Lake City Express: This route has termini in downtown Salt Lake City and East Bay Blvd/1600 South, Provo. This route principally uses I-15. The nearest transfer point to Pleasant Grove is near Utah Valley University at University Parkway and 800 West.

Route 802 - Salt Lake City/Lehi/American Fork/Orem Express: This route has termini in downtown Salt Lake City and East Bay Blvd/1600 South, Provo. This route principally uses I-15. The nearest transfer point to Pleasant Grove is near Utah Valley University at University Parkway and 800 West.

Route 803 - North Utah County/Salt Lake City Express: This route has termini in downtown Salt Lake City and Utah Valley University (University Parkway and 800 West). This route principally uses l-15. The nearest transfer point to Pleasant Grove is located near the American Fork Main Street/I-15 Interchange at UTA's park-and-ride facility.

Route 804 - Lindon/Orem/Pleasant Grove/Salt Lake Express: This route has termini in downtown Salt Lake City and Center Street/State Street in Orem. A part of the route runs through Pleasant Grove's downtown. There is a transfer point on Main Street between 100 South and 200 South.

Route 805 - South Utah County/Salt Lake City Express: This route has termini in downtown Salt Lake City and Payson Main Street/I-15 Interchange. This route principally uses I-15. There are no transfer points or stops for this route noted on the route map.

Route $\mathbf{8 0 7}$ - Pleasant Grove/Cedar Hills/Highland/Alpine to SLC Express: This route has termini in downtown Salt Lake City and downtown Pleasant Grove. A part of the route runs through Pleasant Grove's downtown. There is a transfer point on Main Street between 100 South and 200 South.

Route $\mathbf{8 1 0}$ - Orem/American Fork/Lehi/U of U Express: This route has termini at the University of Utah University Hospital and at the Timpanogos Transit Center in Orem located about 1200

South and 750 East. A part of the route runs through Pleasant Grove's downtown. There is a transfer point on Main Street between 100 South and 200 South.

Route 811 - Utah Valley TRAX Connector: This route has termini at the Sandy Civic Center TRAX Station (10000 South) and University Avenue and 200 South in Provo. This route principally uses I-15, University Parkway and University Avenue. The nearest transfer point to Pleasant Grove is located near the American Fork Main Street/I-15 Interchange at UTA's park-and-ride facility.

Route 816 - Timpanogos Saturday Service: This route has termini at the Sandy Civic Center TRAX Station and East Bay Blvd/1600 South in Provo. A part of the route runs through Pleasant Grove's downtown. There is no transfer point in Pleasant Grove's downtown, but there are a number of stops. The nearest transfer point is located near the American Fork Main Street/I-15 Interchange at UTA's park-and-ride facility.

Route 817 - Provo/Orem TRAX Express: This route has termini at the Sandy Civic Center TRAX Station (10000 South) and University Avenue and Center Street in Provo. This route principally uses I-15, and University Parkway. The nearest transfer point to Pleasant Grove is located near the American Fork Main Street/I-15 Interchange at UTA's park-and-ride facility.

Route 850 - State Street Shuttle: This route has termini in downtown Lehi and East Bay Blvd/1600 South, Provo. A part of the route runs through Pleasant Gove's downtown. There is not a transfer point in Pleasant Grove's downtown, but there are a number of stops. The nearest transfer point is located at 300 West State Street in Lehi.

Going hand-in-hand with mass transit, are bicycle and pedestrian transportation. The City considers these alternative modes as an important part of the City's transportation system. There are several existing trails that are available to pedestrians, bicyclists, and equestrians. The Upper Bonneville Shoreline Trail and Bonneville Shoreline Trail are located principally on Forest Service land east of the City. The Murdock Canal Trail is in the City and is frequently used by walkers, joggers and mountain bikers. All of these trails are important to City residents as recreational recreation facilities. Walking paths, multi-use trails (such as the one on Pleasant Grove Boulevard), and pedestrian routes are available to Pleasant Grove's citizenry.


### 4.0 Future Conditions

Future travel patterns and the associated travel conditions are a direct function of projected land use and socio-economic conditions. Thus, due to the fact that travel is not restricted to municipal boundaries, a larger area of socio-economic characteristics is used to estimate future travel in Pleasant Grove City and the surrounding street systems. Future land use and socio-economic data were obtained from the Mountainland Association of Governments (MAG) and supplemented by data from Pleasant Grove City.

## Future Socio-economic Conditions

The analysis of land use and socio-economic data and projections is generally beyond the scope of this type of transportation study. However, since the transportation system has been planned and designed to accommodate future growth projections, a certain amount of socio-economic documentation is appropriate. The City considers the socio-economic data that was collected to be the best available; however, land use planning is a dynamic process and the assumptions used in this report should not be used to supersede other planning efforts. Table 7 shows the estimated socio-economic conditions such as population, employment, and dwelling units for the Traffic Analysis Zones (TAZ) within Pleasant Grove City as shown in Figure 2 for the year 2040.

Pleasant Grove City plans for the growth to occur throughout the City. Today's transportation system needs to accommodate existing traffic demands and also have capacity built into it to accommodate the projected traffic demands of tomorrow. A couple of assumptions were considered regarding the socioeconomic data presented in this report and the growth expected to occur within the City. First, the TAZ specific socio-economic information only approximates the Pleasant Grove City boundaries based on the data provided by the MAG and reviewed by the City. In addition, actual values may differ somewhat as a result of the large study area of the Regional Transportation Model which includes the unincorporated areas in and around Pleasant Grove City.

MAG is responsible for regional transportation planning throughout the Utah Valley area. The primary responsibility of MAG is to act as the designated Metropolitan Planning Organization (MPO) for Utah County. As such, MAG helps to ensure that consistent right-of-way widths and general standards are followed by all cities and counties in the urbanized areas of Utah County to ensure adequate regional transportation facilities. The primary products of MAG include a 20-year Long Range Transportation Plan and a 5-year Transportation Improvement Program. Both of these are constrained by available (or
reasonably available) revenue. As a result of this constraint, the Long Range Plan does not typically include all of the regional facility improvements which are planned by local communities.

Table 7 Future (2040) Socio-Economic Conditions

| TAZ Number | Population (persons) | Employment (jobs) | Dwelling Units (units) |
| :---: | :---: | :---: | :---: |
| 179 | 9 | 2254 | 3 |
| 180 | 164 | 185 | 51 |
| 181 | 1269 | 55 | 362 |
| 182 | 582 | 187 | 222 |
| 183 | 111 | 102 | 50 |
| 184 | 0 | 152 | 0 |
| 185 | 0 | 578 | 0 |
| 186 | 999 | 1217 | 308 |
| 187 | 0 | 360 | 0 |
| 188 | 0 | 630 | 0 |
| 189 | 1209 | 829 | 372 |
| 190 | 1036 | 148 | 319 |
| 191 | 350 | 900 | 155 |
| 192 | 229 | 679 | 102 |
| 193 | 470 | 16 | 147 |
| 968 | 1267 | 17 | 373 |
| 969 | 486 | 94 | 160 |
| 970 | 575 | 214 | 204 |
| 971 | 829 | 201 | 263 |
| 972 | 738 | 179 | 234 |
| 973 | 950 | 193 | 302 |
| 974 | 1220 | 548 | 323 |
| 975 | 1216 | 546 | 322 |
| 976 | 470 | 8 | 129 |
| 977 | 2227 | 31 | 568 |
| 978 | 834 | 13 | 229 |
| 979 | 1359 | 23 | 408 |
| 980 | 1406 | 24 | 422 |
| 982 | 1106 | 35 | 304 |
| 984 | 785 | 25 | 216 |
| 985 | 290 | 48 | 79 |
| 986 | 523 | 86 | 143 |
| 988 | 294 | 263 | 130 |
| 1012 | 2922 | 479 | 795 |
| 1054 | 1281 | 40 | 352 |


| TAZ Number | Population (persons) | Employment (jobs) | Dwelling Units (units) |
| :---: | :---: | :---: | :---: |
| 1055 | 2317 | 32 | 591 |
| 1056 | 843 | 13 | 232 |
| 1057 | 1402 | 24 | 421 |
| 1058 | 1208 | 542 | 319 |
| 1068 | 589 | 356 | 182 |
| 1069 | 1277 | 644 | 405 |
| 1070 | 1464 | 144 | 518 |
| 1071 | 1288 | 248 | 423 |
| 1072 | 1383 | 30 | 380 |
| 1073 | 1447 | 20 | 426 |
| 1074 | 516 | 17 | 161 |
| 1075 | 378 | 3 | 109 |
| 1076 | 557 | 8 | 209 |
| 1077 | 936 | 115 | 353 |
| 1078 | 452 | 0 | 175 |
| 1079 | 98 | 788 | 43 |
| 1080 | 1243 | 399 | 474 |
| 1081 | 2433 | 428 | 705 |
| 1082 | 1248 | 55 | 356 |
| 1086 | 2480 | 2168 | 746 |
| 1296 | 0 | 1677 | 0 |
| 1297 | 0 | 1879 | 0 |
| 1298 | 0 | 424 | 0 |
| 1299 | 693 | 782 | 214 |
| 1392 | 2003 | 496 | 615 |
| 1393 | 964 | 629 | 311 |
| 1396 | 335 | 28 | 150 |
| TOTAL: | 54,760 | 23,308 | 16,565 |

## Future Land Use

The future conditions traffic analysis assumes full buildout as represented in the City's current General Plan. The General Plan outlines the densities and types of land uses the City expects will ultimately be built throughout the City. This data was used to validate and modify where necessary the projected socio-economic conditions used in MAG's travel demand model for the TAZ located in and around the City.

## Travel Demand Modeling

Future travel demand projections are a function of projected land use and socio-economic conditions. MAG's regional travel demand model was used to accomplish this effort. First, the TAZ from MAG's model were divided up into smaller TAZ in order to more accurately model traffic demand within and around the City. Using existing traffic and land use data from Pleasant Grove City, the travel demand model was then calibrated to accurately reflect existing traffic conditions in Pleasant Grove City. Once the travel demand model was calibrated for existing conditions, the model used future land uses and socio-economic data as inputs to predict future roadway traffic volumes and conditions.

## Projected Traffic Volumes and Conditions

The resulting output of the travel demand model consisted of projected traffic volumes on all the major streets throughout the City. This data was used to formulate the roadway improvements on individual streets. Various alternatives were modeled and analyzed to develop these improvements. Various measures of effectiveness were considered to establish the projected traffic volumes and traffic conditions for the future improvements including Level of Service, delay, and overall safety. Existing (2009) and future (2040) traffic scenarios of Pleasant Grove City were modeled. The following scenarios of broad alternatives are described in greater detail below.

## Existing Conditions

Conditions as they exist in 2009 were simulated using the travel demand model. These conditions were reviewed and compared with existing operations and traffic volumes to determine existing deficiencies, or problems that are caused by existing travel demand as opposed to growth in travel demand. Existing traffic volumes and LOS are depicted in Figure 4.

## No-Build Conditions

The no-build conditions consisted of modeling the potential development and growth throughout the City without making any additional improvements beyond what is already on the MAG Long Range (20 year) Plan. The resulting traffic volumes ( 2040 projections) and LOS of this option are shown in Figure 6. This broad alternative was modeled to help pinpoint various problem areas throughout the City and to demonstrate the need for traffic improvements throughout the City. This option assumes that all the improvements on MAG's current plan would be built by the year 2040, including widening State Street to 7 lanes, constructing the extension of 2000 West, widening Pleasant Grove Blvd to 5 lanes, and constructing the extension of 4000 North to the west. Regardless of these assumed improvements, a few roadways throughout the City are expected to operate at an undesirable LOS without any additional improvements; particularly:

- 100 East from State Street north through the City;
- 900 South between Locust Drive and 1200 East; and,
- Main Street from State Street south to Lindon.

In addition to basic roadway widening concerns, various intersections are anticipated to operate poorly without proper improvements, including:

- 200 South \& State Street
- 200 South \& Pleasant Grove Blvd
- 200 South \& 300 East
- 200 South \& Murdock Drive
- 600 West \& Center Street
- 1300 West \& 1000 South
- 100 East \& State Street
- 100 East \& 1800 North
- Canyon Road \& 2600 North
- Canyon Road \& 4000 North
- 1100 North \& 1300 West
- 1100 North \& 2000 West
- 1800 North \& 600 West
- 1800 North \& 1300 West
- 2600 North \& 600 West
- 2600 North \& 900 West
- 2600 North \& 1300 West
- 4000 North \& 900 West
- Locust Drive \& 1000 South
- Locust Drive \& 200 South
- 1100 North \& 600 West


## Build Conditions

A build alternative (2040) was developed while attempting to balance transportation needs with realistically available funding. Figure 7 outlines future improvements throughout the City as a whole; Figure 8, Figure 9, and Figure 10 each demonstrates the improvements for the north, southwest, and southeast sections of the City, respectively. Figure 11 shows the anticipated traffic volumes and LOS if all the improvements are implemented. Details of these future improvements are outlined in further detail in the next chapter.







### 5.0 Alternatives Evaluation and Guidelines

Upon evaluating the existing and future conditions, several guidelines to better accommodate future traffic volumes and conditions are outlined in the following pages.

## Roadway Functional Classification

Transportation planning allows for adequate transportation solutions, as well as connectivity with the surrounding areas, while at the same time identifying ways impacts can be kept to a minimum. The key to maintaining this balance exists in the ability to adequately plan for major corridors that minimize through traffic in neighborhoods, while at the same time coordinating land use and transportation plans in order to capitalize on the efficient movements of people and goods. To accomplish this objective, a hierarchy of streets known as a Functional Classification of Streets is defined. The functional classification scheme coincides with the surrounding areas. The City has defined a functional classification system consisting of the following roadway classifications:

- Major Arterial ( 5 to 7 lanes $-112^{\prime} \& 136^{\prime}$ right of way)
- Minor Arterial (3 lanes - 76' right of way)
- Industrial Arterial (3 lanes - $76^{\prime}$ right of way)
- Collector (2 to 3 lanes $-70^{\prime}$ right of way)
- Local Road (2 lanes $-48^{\prime} \& 56^{\prime}$ right of way)

Each of these roadway classifications has a specific purpose and function. For example, the primary purpose of an arterial street is to move traffic, accommodate longer trips, and serve higher density retail and commercial land uses. Long continuous routes with high traffic volumes and speeds characterize arterial roadways. On the other hand, local roads are intended to provide for local access to individual properties. Local roads are shorter in length with lower speeds and volumes. Collector roads provide a transition between arterials and local roadways by providing both access and traffic moving capability. Collector type facilities serve moderate traffic volumes at moderate speeds.

Table 8 and Table 9 summarize some of the planning and design issues for each roadway classification, including right-of-way width, number of travel lanes, access control, traffic capacity, speed, trip length and expected accident rate. In addition, the City designed typical cross-sections for each of the roadway classifications listed above. These typical cross-sections are illustrated in Figure 12 and Figure 13. A functional classification was assigned to all of the important roadways throughout the City; these are shown in Figure 14.

Table 8 Functional Classification Planning and Design

| Functional Group | Right-of-Way <br> Width | No. of Travel <br> Lanes | Access Control | Traffic Capacity <br> (vehicles per day) |
| :---: | :---: | :---: | :---: | :---: |
| Major Arterial | 136 feet | 7 | Public Streets Only | $<64,000$ |
| Major Arterial | 112 feet | 5 | Public Streets Only | $<42,000$ |
| Minor Arterial | 76 feet | 3 | Encourage Public <br> Streets Only | $<17,800$ |
| Collector | 70 feet | 2 | Control Driveway <br> Spacing | $<16,200$ |
| Local | 56 feet | 2 | Varies | $<2,000$ (\& varies) |

Table 9 Functional Classification Operations

| Functional Group | Speed (mph) | Typical Trip <br> Length | Typical Accident Rate <br> (Accidents per million vehicle miles) |
| :---: | :---: | :---: | :---: |
| Major Arterial | $45+$ (\& varies) | 3 to 15 miles | 3 |
| Minor Arterial | 35 to 45 (\& varies) | 1 to 5 miles | 6 |
| Collector | 25 to 40 (\& varies) | $<2$ miles | 8 |
| Local | $<25$ (\& varies) | $<0.5$ miles | Varies |

At the intersections of many major and minor arterials, traffic volumes are expected to be high enough to potentially warrant additional turning lanes such as exclusive right-turn lanes or dual left-turn lanes. To accommodate these extra lanes, the City will require widening some localized intersections. As City staff reviews traffic impact studies submitted by developers, particular attention will be given to intersection operations surrounding the future development to determine the need for additional auxiliary lanes. In addition, the City will conduct a detailed intersection analysis of existing traffic operations during every major review of the City TMP once every two to three years.

Additional widening for exclusive bus turnout lanes does not appear to be necessary at this time; however, the City may determine that exclusive bus turnout lanes are necessary in specific locations based on a case by case basis to preserve roadway capacity. Unless otherwise specified by the City, bus maneuvers will primarily occur within the shoulder areas at designated bus stops.

Roadway designs need to provide adequate curb radii at intersections based on the specific roadway classifications of the intersecting roads. Table 10 outlines appropriate turning radii for corresponding intersecting roadway classifications.

Table 10 Intersection Curb Radii Chart

| Cross Street | Major Road |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Major Arterial | Minor Arterial | Collector | Local |
| Major Arterial | $35^{\prime}$ | $35^{\prime}$ | $35^{\prime}$ | $\mathrm{N} / \mathrm{A}$ |
| Minor Arterial | $35^{\prime}$ | $35^{\prime}$ | $30^{\prime}$ | $\mathrm{N} / \mathrm{A}$ |
| Collector | $35^{\prime}$ | $30^{\prime}$ | $30^{\prime}$ | $25^{\prime}$ |
| Local | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ | $25^{\prime}$ | $\mathbf{2 5}^{\prime}$ |

## MAJOR ARTERIAL (136' ROW) - 7 Lanes



MAJOR ARTERIAL (112' ROW) - 5 Lanes


MINOR ARTERIAL (76' ROW) - 3 Lanes


INDUSTRIAL ARTERIAL (76' ROW) - 3 Lanes


Figure 12 Typical Cross-Sections - Arterial Roads

COLLECTOR (70' ROW) - 3 Lanes


RESIDENTIAL LOCAL ROAD (56' ROW) - 2 Lanes


ONLY APPROVED FOR STREETS THAT ARE LESS THAN 800 FEET IN LENGTH AND LESS THAN 400 ANTICIPATED ADT. 2. A SUB-LOCAL STREET MAY NOT INTERSECT WITH ANOTHER SUB-LOCAL STREET.
3. DRIVEWAYS OF ADJACENT BUILDINGS SHALL BE NO CLOSER THAN 25 FEET TO ONE ANOTHER.
3. MAY ONLY BE USED IN MULTI-FAMILY DEVELOPMENTS

AND IS SUBJECT TO THE APPROVAL OF THE CITY ENGINEER. 4. DRIVEWAYS OF ADJACENT BUILDINGS SHALL BE NO CLOSER THAN 25 FEET TO ONEANOTHER.

Figure 13 Typical Cross-Sections - Collector \& Local Roads


## Huntsman Lane (4000 North) Alternatives

After collecting and reviewing public comment, the City learned that residents living near 4000 North are concerned with potential improvements along the 4000 North corridor. MAG's current 2015 long range plan has an east/west corridor along the existing 4000 North corridor through the City. This alignment would begin from the I-15 Interchange at 2100 North/1200 West in Lehi, continue eastward through American Fork and terminate at Canyon Road in Pleasant Grove. MAG's plan refers to this alignment as "Highland 9600 North, Lehi to Pleasant Grove," and assumes the assumption of additional funds. The City will need to coordinate planning efforts for this area with the region (MAG \& UDOT) and Cedar Hills.

Residents also pointed out concerns with available sight distance at the intersection of 4000 North and Canyon Road. Based on a site visit conducted by the City Engineer, appropriate sight distance at this intersection is not adequate and will need to be mitigated.

Although further study is necessary to determine the actual impacts of each alternative, a few alternatives are recognized as potential options for the 4000 North corridor:

- Do nothing (Figure 15). This is not a likely alternative since as the regional east/west facility is constructed to the west of the City, travel demands will increase along 4000 North and exceed the typical desired capacity of a residential local road. Regardless of roadway widening improvements to 4000 North, as mentioned earlier, intersection improvements would be necessary at Canyon Road and 4000 North to improve safety.
- Follow the City's previously approved TMP (Figure 16). The previous plan shows 4000 North being a collector road west of 900 West and a local road east of 900 West; 9530 North (the east/west road just south of 4000 North) between 900 West and Canyon Road is also shown as a collector. The offset of these east/west collector roads at 900 West would likely result in unnecessary congestion at these intersections. The City would need to construct the small extension of 9530 North that lies within the City for this alternative. Traffic calming measures would also be needed along 4000 North between 900 West and Canyon Road to discourage motorists from using this section of roadway even though it would be the most direct connection to the regional east/west facility.
- Widen 4000 North to a collector status throughout the City (Figure 17). This alternative would provide the most direct connection to the east/west regional facility to the west of the City. A roundabout at the intersection of 900 West and 4000 North would be an ideal intersection control to help minimize intersection delay and to calm and channelize traffic on the roadways approaching the intersection.
- Realign 4000 North with 9530 North in Cedar Hills (Figure 18). Another alternative that could provide direct connection to the east/west regional facility to the west of the City would consist of realigning 4000 North with 9530 North in Cedar Hills. The City would need to construct the
small extension of 9530 North that lies within the City for this alternative. A roundabout at the intersection of 900 West and 9530 North would be an ideal intersection control to help minimize intersection delay and to calm and channelize traffic on the roadways approaching the intersection.

Based on recent travel demand modeling efforts, the City anticipates the following Average Daily Traffic (ADT) volumes for the year 2040 regardless of the alternative:

- 4000 North between Canyon Road \& 900 West - approximately 3,600 vehicles per day
- 4000 North between 900 West \& 900 East (AF) - approximately 5,300 vehicles per day
- 900 West both north and south of 4000 North - approximately 2,100 vehicles per day

To provide a frame of reference, approximately 2,000 vehicles per day is typically the maximum volume for local residential roads before significantly impacting neighborhood traffic congestion, noise, and safety. Ideally, less traffic is desirable for residential local roads.


Figure 154000 North Alternatives - Do Nothing


Figure 164000 North Alternatives - Previously Approved TMP


Figure 174000 North Alternatives - Widening


Figure $18 \mathbf{4 0 0 0}$ North Alternatives - Realignment
After reviewing and discussing the pros and cons of the above alternatives for the 4000 North Corridor, both the Planning Commission and City Council decided not to change the plan for this area, and to maintain 4000 North between 900 West and Canyon Road as a local road (Figure 16).

## Alternative Transportation Modes

## Mass Transit

As Pleasant Grove City and the surrounding areas continue to grow, roadways will become more congested due to increasing number of vehicles. In an effort to help alleviate some of the congestion and reduce the number of vehicles on the roadway system, alternative modes of transportation will become increasingly important. Several guidelines for increasing and improving alternative transportation modes in Pleasant Grove City are outlined in the following paragraphs:

## UTA Local/Express Bus Service

Bus service helps provide a low cost alternative travel mode for the public while benefiting communities. With the continued growth in Pleasant Grove, expansion of the existing bus routes in the City is anticipated in order to meet the increasing demand for service. Currently, several different regional bus routes pass through the City. New bus routes are shown in Figure 20. The City and UTA need to coordinate with each other to solidify these routes so that they provide optimum linkage between the commercial/industrial areas and the residential areas of the City.

There are currently no specific plans by UTA to expand the local bus service. However, local bus route planning is an on-going process and as the need arises, the City will seek to add more service. City planning officials have indicated that additional local bus service could be considered by UTA using the following as routes: 100 East; the future 1000 South/1200 East (Lindon) Connection; Main Street/Geneva Road; 3300 North; and 900 West (North of 3300 North). Additionally, MAG has considered routes on 2000 West/700 North (Lindon)/1000 South; 500 East; 1100 North; 200 South; and State Street between Main Street and Pleasant Grove Blvd.

## Intercity Connector

According to MAG's Regional Transportation Plan this project is identified as a Phase 1 project, meaning that it is planned to occur between 2009 and 2015. The route has a triangular shape north of University Parkway with an extension near the tip of the triangle. The extension runs from UTA's park-and-ride facility near the American Fork Main Street/I-15 Interchange to downtown Pleasant Grove. The eastern tip of the triangle is located at University Parkway and State Street in Orem. The western tip is located at 1200 South and Geneva Road. From there the system runs south through Provo using mostly University Avenue and State Street, through Springville using Main Street, and through Spanish Fork using U.S. Hwy. 89. The Intercity Connector will provide interface with the various FrontRunner stations in American Fork, Vineyard and Orem.

## Bus Rapid Transit (BRT)

BRT is planned to occur in Phase I (2009-2015) of the Regional Transportation Plan (RTP). The RTP identifies a Bus Rapid Transit (BRT) project between Provo and Orem. The termini for this project are 1200 South/Geneva Road in Orem and 100 West and approximately 1800 South in Provo. It will interface with the Intercity Connector on University Parkway and 1200 South in Orem. To the south in Provo, the BRT would also interface with FrontRunner commuter rail.

## Light Rail

A TRAX extension project from Lehi to Provo is in the planning phases and in the MAG Regional Transportation Plan as a "Vision Project", which means it is unfunded and likely would not be implemented until sometime after 2030. The route would follow the rail line located east of I-15 that UTA owns in Lehi, American Fork, Pleasant Grove, Lindon and Vineyard. From Vineyard the route is located in the FrontRunner right-of-way. In Pleasant Grove the route generally parallels and is adjacent to State Street.

## Commuter Rail Transit

FrontRunner commuter rail is currently under construction between downtown Salt Lake City and Provo (approximately 100 West/ 1800 South). The FrontRunner commuter rail is anticipated to be completed and operational sometime in the year 2013. Stations that are planned that are near Pleasant Grove (but not in Pleasant Grove) are American Fork, and Vineyard.

## Intermodal Center

There is a possibility of developing an intermodal center that would accommodate light rail, the Intercity Connector, and local/express bus in downtown Pleasant Grove at about 200 West and 200 South. Approximately one acre of vacant land is located here (behind the post office) on which a light rail station and some parking facilities could be built. However, there has been some thought that this site may be too small and that a larger site may be needed to accommodate the TRAX station, the Intercity Connector, local/express bus, and a compliment of parking. Coordination between the City and UTA will take place in the near future on this site.

## Bicycle and Pedestrian Facilities Plan

Pleasant Grove City's current Trails plan is shown in Figure 19. Trails are an important element to the transportation system and improve the overall quality of life for the community. Trails throughout the City generally parallel roadways but may also follow canals, rivers, utility corridors, and natural drainage channels. Pedestrians, bicyclists, and equestrians (in rural areas) could share these routes. The trails plan shows the location and types of trails to be installed. Table 11 outlines the different trails by number as shown in Figure 19.

## Trail Priorities

The City has indicated that it will continue with its recreational trails priorities of the past plan, which are: Battle Creek Trailhead Park; Bonneville Shoreline Trail and Trailhead Parks (upper and lower); Wetlands in the Grove (connect trail systems in current developments and adjacent cities); bike paths (city-wide along existing collectors and some arterials); and Murdock Canal Trail.

Table 11 Trail Descriptions

| No. in Map (Figure 19) | Name/Location |
| :---: | :---: |
| Pleasant Grove Trails - North/South |  |
| 1 | Upper Bonneville Shoreline Trail - unimproved hiking, mountain bike, and equestrian trail |
| 2 | Bonneville Shoreline Trail - unimproved hiking/mountain bike trail (regional) |
| 3 | Murdock Canal Trail - multi-use trail (existing canal (regional) with equestrian) |
| 4 | 1500 East - pedestrian route/bike lane |
| 5 | Dalton Ave/1260 East - pedestrian route/ bike lane |
| 6 | 500 East - pedestrian route/bike lane |
| 7 | Locust Avenue - pedestrian route/bike lane |
| 8 | State Street - pedestrian route/bike route |
| 9 | Old Fort Wall (300 East to 100 West) - pedestrian route |
| 10 | 100 East/A. F. Canyon Road Trail - pedestrian route/bike lane |
| 11 | Main Street/Geneva Road - pedestrian route/bike lane |
| 12 | 600 West - pedestrian route/bike lane |
| 13 | 900 West (2600 North to city limits) - pedestrian route/bike lane |
| 14 | 900 West (1000 South to Pleasant Grove Boulevard) - pedestrian path |
| 15 | 1300 West (city limits to 2600 North) - pedestrian route/bike lane |
| 16 | 1450 West (2600 North to Murdoch Canal Road) - pedestrian route/bike lane |
| 17 | Pleasant Grove Boulevard - multi-use trail (regional) |
| 18 | 2000 West Ditch Trail/Monet Drive - multi-use trail |
| 19 | 2000 West Trail - multi-use trail (regional) |
| Pleasant Grove Trails - East/West |  |
| 20 | 1000 South - pedestrian route/bike lane (regional) |
| 21 | 700 South (Sam White Lane) - pedestrian route/bike lane |
| 22 | Utah Valley Drive (500 South) - pedestrian route/bike lane |
| 23 | Old Fort Wall (300 South to 100 North) - pedestrian route |
| 24 | 200 South (200 South/220 South/100 South) - pedestrian route/bike lane |
| 25 | 100 South/Center Street - pedestrian route/bike lane |
| 26 | Rail Trail - UTA rail right-of-way next to State Street(regional) multi-use |
| 27 | 400 North - pedestrian route/bike lane |
| 28 | 500 North/Grove Creek Drive - pedestrian route/bike lane |
| 29 | 1100 North - pedestrian route/bike lane |
| 30 | 1800 North - pedestrian route/bike lane |
| 31 | 2600 North - pedestrian route/bike lane |
| 32 | 3300 North - pedestrian route/bike lane |




## Bicycle and Pedestrian Improvements

There are a number of observations about bicycle and pedestrian transportation that were made during the development of this transportation master plan. As a consequence, the City will seek to:

- Install painted bike Lanes -4 to 5 feet wide next to the outside general purpose lane.
- Construct multi-use trails - Minimum of 10 feet wide, but when possible and if there is enough room the trail can be 12 feet wide.
- Separate equestrian facilities from bike/pedestrian facilities, however both can be accommodated within the same corridor.
- Provide connection between parks/schools and bike/pedestrian facilities.
- Connect mass transit facilities with bike/pedestrian facilities.
- Join sidewalks where gaps exist, particularly on busy, high-speed roads, and roads that have been designated as pedestrian routes.
- Develop priorities for providing sidewalks on streets where gaps exist throughout the City.
- Coordinate and inter connect trails with adjacent cities (Lindon, American Fork, Highland, and Cedar Hills), the County, and the Forest Service.
- Avoid placing bicycle facilities on high speed and busy roads.
- Conduct planning/engineering studies with regards to bike, pedestrian, and other trail facilities for purposes of locating, designing, and acquiring ROW for the trails.
- Make plans to implement the "Trails" Plan (include the facilities in various street projects, as it is much more difficult to retrofit facilities).
- Develop multi-use trails in the urban environment.
- Maintain street pavement in good condition and pave roadway shoulders where bike lanes have been identified.
- Coordinate with UDOT relative to pedestrian and bike facilities on state roads (i.e. State Street, Geneva Road, 100 East, etc.)
- Execute and finalize an agreement with the Murdock Canal Company as soon as possible to formally make available the canal road as a trail to the public. The Canal Company is committed to piping or covering the canal and the City has indicated desire to pave a trail of 15 feet or more over the top within the next three years. The Canal Company expects to start work during the summer of 2009. A multi-use trail with an equestrian facility is planned within this corridor.
- Note that bicycles are permitted on all roads in the State of Utah, with the exception of accesscontrolled freeways. The designation of certain roads as Class II (bike lane) or Class III (bike route) facilities is not intended to imply that these are the only roadways intended for bicycle use. Rather, the designation of a network of Class II and III on-street bikeways recognizes that certain roadways are optimal bicycle routes, for reason such as directness or access to significant destinations.


## New Trails

After evaluating the existing bicycle and pedestrian facilities it was noted that the southeastern quadrant and other miscellaneous locations of the City could use some facilities in order to make the bicycle/pedestrian facilities network more complete and interconnect them with other planned facilities. The list below reflects the planned additions to the network:

- 1300 East/Dalton Drive (200 South-Grove Creek Drive)
- Grove Creek Drive (100 East-1100 North, approximately 1050 East)
- 500 East ( 200 South-Murdock Drive, approximately 1800 North)
- 400 North ( 100 East- 600 West)
- State Street (south of Pleasant Grove Boulevard)
- 700 South (1300 West-Pleasant Grove Blvd.)


## Inter-jurisdiction Coordination

During the evaluation of the existing and planned bicycle/pedestrian facilities, it was noted that several facilities planned by Pleasant Grove City did not connect with facilities in neighboring jurisdictions and essentially they simply ended. Coordination will take place between Pleasant Grove City and the adjacent jurisdictions in an effort to make it possible for the bicycle/pedestrian facilities to be continuous across city boundaries.

The following Pleasant Grove bicycle and pedestrian facilities do not connect with a comparable counterpart in one of the neighboring cities:

## Bike/Pedestrian Facilities that do not connect with Lindon City's Facilities

- 1500 East
- Locust Avenue
- Main Street (PG)/Geneva Road (Lindon)


## Bike/Pedestrian Facilities that do not connect with American Fork City's Facilities

- 700 South/Sam White Lane Trail
- "220 South" Trail
- 1100 North Trail
- 1800 North Trail
- 2600 North Trail


## Bike/Pedestrian Facilities that do not connect with Highland City's Facilities

- 3300 North Trail


## Bike/Pedestrian Facilities that do not connect with Cedar Hills City's Facilities

- American Fork Canyon Trail
- 900 West Trail


## Definitions of Bicycle and Pedestrian Facilities

To assist the City in planning and discussing bicycle and pedestrian facilities, and so that there can be a common understanding of what these facilities entail, some definitions of these facilities are provided below:

- Bike Lane: A portion of a roadway that has been designated by striping, signing and pavement markings for the preferential or exclusive use of bicyclists.
- Bikeway or Bike Route: A generic term for any road, street, path or way, which in some manner is specifically designated for bicycle travel regardless of whether such facilities are designated for the exclusive use of bicycles or are to be shared with other transportation modes.
- Bicycle Route system: A system of bikeways designated by the jurisdiction having authority with appropriate directional and information route markers, with or without specific bicycle route numbers. Bike routes establish a continuous routing, but may be a combination of any and all types of bikeways.
- Rail-Trail: A shared use path, either paved or unpaved, built within the right-of-way of an existing or former railroad.
- Roadway: The portion of the highway, including shoulders, intended for vehicular use.
- Shared Roadway: A roadway without a bikeway designation that allows both bicycle and motor vehicle travel and may have wide curb lanes or paved shoulders.
- Shared or Multiple Use Path or Trail: A pathway that is physically separated from motorized vehicular traffic by open space or a barrier and which is either within the highway right-of-way or within an independent right-of-way that is open for use by bicyclists, pedestrians, skaters, wheelchair users, joggers, and other non-motorized users.
- Signed Shared Roadway: A roadway that has been identified by signing as a preferred bike route.
- Shoulder: The portion of the roadway (paved or unpaved) contiguous with the traveled way for accommodation of bicycle travel, stopped vehicles, for emergency use and for lateral support of sub-base, base and surface courses.
- Sidewalk: The portion of a street or highway right-of-way designed for preferential or exclusive use by pedestrians.


## References for Bicycle and Pedestrian Facilities

The City will obtain and use the following references for planning and design bicycle and pedestrian facilities:

- AASHTO Guide for the Development of Bicycle facilities, 1999
- UDOT's Guide for Bicycle and Pedestrian Accommodations
- Portland Pedestrian Design Guide, June 1998
- City of Portland, Office Transportation, Bicycle Master Plan, July 8, 1998
- Victoria Transport Policy Institute, Pedestrian and Bicycle Planning: A guide to Best Practices, April, 2006


## Signal Inventory

The location of both existing and future traffic signals is shown in Figure 21. All the intersection improvements shown on this map are based on future traffic projections; actual implementation of a future traffic signal or roundabout will require a detailed traffic study documenting the need for such improvements. All future signal locations shown in Figure 21 are pending warrants being met as outlined in the MUTCD.

One signal is expected at the realignment of Center Street and 600 West. Because this signal is in close proximity to the existing signal at State Street and Pleasant Grove Boulevard, the two will require coordinated timing. Three other future signals fall on 2000 West, one on 700 North, and two on 100 East. At major intersections in place of or where traffic signals are not warranted, the City considers roundabouts to be a viable alternative.

## Safety

One of the main goals of the TMP and long term transportation planning in general is to envision traffic growth and provide for adequate facilities as the need arises. Constructing these future facilities to make possible safe operations is of equal importance. As a result, the City will construct and maintain these facilities to applicable design and engineering standards such as those set forth in Pleasant Grove City ordinances, the American Association of State Highway Transportation Officials (AASHTO) "Policy on Geometric Design of Highways and Streets," and the Manual on Uniform Traffic Control Devices (MUTCD). This includes implementing applicable Americans with Disabilities Act (ADA) standards and school zone treatments.

## Driveways

One safety item that deserves attention is the interaction of driveways on collector and arterial streets. Where accesses do exist on these roadways, the City will require that sufficient space be provided to allow vehicles to turn around on site so that they always exit the driveway facing the street. For example, private residences ought to have circular type driveways in order to safely enter and exit the driveway with ease. Backing maneuvers into busy streets are very dangerous as this is not a typical action drivers expect. Where on-street parking is permitted on busy streets, the City will require that parking stalls be parallel as opposed to perpendicular to traffic to avoid dangerous backing maneuvers into oncoming through traffic.

## Offset Intersections

Offset intersections often have negative impacts on traffic flow and can potentially create capacity problems at intersections where the left turn storage areas overlap, forcing queued vehicles into through traffic lanes. Aligning access on both sides of the street will minimize conflict points in the roadway and provided safer and more efficient traffic flow.


## Intersection Traffic Controls

Stop signs and traffic signals should not be used where not warranted. Studies have shown that in areas where these forms of control have been installed, and not warranted, that the motoring public will disregard the control measure and therefore the right-of-way assignments at that location. This disregard for traffic control devices creates hazardous locations and a general disregard for other traffic control measures in the area.

## Stop Sign Warrants

The City will use the MUTCD as the standard for determining how and when a stop sign is installed. As stated in the MUTCD, "Stop signs should be used if engineering judgment indicates that one or more of the following conditions exist:

- Intersection of a less important road with a main road where application of the normal right-of-way rule would not be expected to provide reasonable compliance with the law;
- Street entering a through highway or street;
- Unsignalized intersection in a signalized area; and
- High speeds, restricted view, or crash records indicate a need for control by the stop sign."

The City will minimize the number of vehicles required to stop if at all possible to preserve capacity and functionality of the roadway network; therefore, the City will determine which road to stop by verifying the street carrying the lowest volume of traffic. Less restrictive traffic control such as a yield sign will be used as an alternative to stop signs if at all possible to minimize delays. The City will also install yield signs in compliance with the MUTCD guidelines. Stop signs should not be used to control speed, but to designate right-of-way at intersecting roadways. Multi-way stop control may be used as a safety measure at intersections where the volume of traffic is approximately equal for all approaches and where safety is of concern, or as an interim measure where a traffic signal is justified and has yet to be installed. City Staff will use engineering judgment and the guidelines outlined in the MUTCD to determine the appropriate application of stop and yield signs.

## Traffic Signal Warrants

The City will not install traffic signals unless at least one or more of the eight traffic signal warrants (as outlined in the MUTCD) have been met. Even if warrants are met for a particular intersection, City Staff will need to base the decision of installing a traffic signal based on information obtained through engineering studies and comparisons with the requirements set forth in the MUTCD. As stated in the MUTCD, "the satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal." The eight warrants outlined in the MUTCD include the following:

- Warrant 1: Eight-Hour Vehicular Volume
- Warrant 2: Four-Hour Vehicular Volume
- Warrant 3: Peak Hour
- Warrant 4: Pedestrian Volume
- Warrant 5: School Crossing
- Warrant 6: Coordinated Signal System
- Warrant 7: Crash Experience
- Warrant 8: Roadway Network


## Roundabouts

Many communities in the United States are beginning to embrace the concept of roundabouts. A roundabout is an intersection control measure used successfully in Europe and Australia for many years. A roundabout is composed of a circular, raised, center island with deflecting islands on the intersecting streets to direct traffic movement around the circle. Traffic circulates in a counter-clockwise direction making right turns onto the intersecting streets. There are no traffic signals; rather, entering traffic yields to vehicles already in the roundabout.

Advantages of roundabouts include reduced traffic delays, increased safety and reduced right-of-way requirements. They can reduce delays compared to a signalized intersection due to the stop phase being eliminated. At the same time, roundabouts can improve safety because the number of potential impact points, and the number of conflict points the driver must monitor, are both substantially reduced over a conventional four-way intersection. Properly designed roundabouts can also accommodate emergency vehicles, trucks, and snow plowing equipment.

Unlike the typical New England "traffic circle" or "rotary," design standards for roundabouts are very specific and the Federal Highway Administration (FHWA) has prepared a design guide for modern roundabouts in the United States. Development of a roundabout will only occur as a result of an intersection study performed by a qualified Traffic Engineer and when the minimum capacity and design criteria are met. The FHWA has determined that the maximum flow rate that a roundabout can accommodate depends on the geometric elements (circle diameter, number of lanes, etc.), the circulating flow (vehicles going around the circle), and entry flow (vehicles entering the circle). A single lane roundabout can accommodate up to 1,800 vehicles per hour and a double lane roundabout can accommodate up to 3,400 vehicles per hour. Figure 22 shows an example of a typical single lane roundabout design.


Figure 22 Typical Roundabout Design
The National Transportation Research Board examined traffic delays before and after roundabouts were installed at eight intersections in the United States. The study determined that delays (the time spent stopped and moving up to the intersection) decreased on average by 78 percent and 76 percent during the AM Peak Hour and PM Peak Hour, respectively. The results indicate that roundabouts can reduce congestion in certain circumstances. In addition, the FHWA studied safety characteristics of a sample of eleven roundabouts in the United States. The agency determined that the number of personal injury accidents and property damage-only accidents decreased 51 percent and 29 percent, respectively, after roundabouts replaced conventional intersections. Roundabouts are an appropriate solution for certain problem intersections in the region.

Potential future roundabout locations are shown in Figure 7. The City will build roundabouts at these locations pending more detailed traffic analysis as needs arise.

## Traffic Calming

Street patterns are typically developed in response to the desires of the community at the time of construction. In Utah, the history of using a grid system of large blocks and wide roads for planning and development purposes started long ago and has proven efficient for moving people and goods throughout a network of surface streets. However, the nature of a grid system with wide and often long, straight roads can result in excessive speeds. For that reason, the City will implement traffic calming measures (TCM's) where appropriate to reduce speeds on residential roadways.

The Institute of Transportation Engineers (ITE) has established a definition for traffic calming that reads: "Traffic calming is the combination of mainly physical measures that reduce the negative effects of motor vehicle use, alter driver behavior and improve conditions for non-motorized street users." Altering driver behavior includes lowering of speeds, reducing aggressive driving, and increasing respect for non-motorized street users.

## Types of Traffic Calming Measures

There are several types of TCM's which are grouped into three categories depending on the level of control or effect on traffic flow and speeds. Category One measures are the least restrictive, while Category Three are the most dramatic. These categories are outlined in further detail below. Several factors can influence the choice of TCM's used including the location, street classification, street geometry, adjacent land uses, public transit needs, budget, climate, aesthetics, and community preferences.

## Category One - Traffic Control Devices

Traffic control devices consist of signs, signals, and pavement markings to regulate, warn, guide, and provide information to drivers. Examples include regulator signs (i.e., speed limit signs), warning signs (i.e., pedestrian warning signs), traffic signals, etc. Often traffic control devices are overused as TCM's. Though the function of traffic calming devices is often similar to that of TCM's, specific traffic control devices should not be overused to communicate different purposes. One of the primary purposes of traffic control devices is to inform drivers of traffic laws and specific right-of-ways in order to maintain order and safety. Overuse of such traffic control devices diminishes their intended purpose. For example, the MUTCD states that "stop signs should not be used for speed control." When used following the guidelines outlined in the MUTCD, traffic control devices can assist as part of roadway/intersection designs to calm traffic where necessary.

## Category Two - Street Modification

Street modification TCM's include actions that physically alter the vertical or horizontal alignment of the roadway. Vertical changes include speed humps, speed tables, raised intersections, etc. Horizontal changes include chicanes and lateral shifts. Other street modifications TCM's include constrictions (i.e., narrowing, pinch points, islands, chokers, etc.), narrow pavement widths (i.e., medians, edge treatments, bulb-outs, etc.), entrance features,
roundabouts, small corner radii, street closures, and streetscaping (i.e., surface textures and colors, landscaping, street trees, street furniture, etc.).

## Category Three - Route Modification

Route modifications consist of altering available routes of traffic flow. Examples include oneway streets, diverters, closures, and turn prohibitions. Instead of attempting to altering drivers' behavior (Categories One and Two), route modification TCM's attempt to alter drivers' routes altogether.

## Streetscaping

Streetscaping includes the planning and placement of items such as street furniture, lighting, art, trees, landscaping, and side treatments along streets and intersections. Although streetscaping can be implemented without traffic calming, TCM's need a certain element of streetscaping to be functional. Streetscaping softens the appearance of speed humps or tables and enhances the aesthetics of roundabouts and constrictions, etc. Landscaping and other roadside treatments make street closures more effective and safer by highlighting the presence of the measure.

## Other Considerations

Spacing is an important consideration for TCM's. If TCM's are too far apart (greater than 600 to 1000 feet), speeding can occur between the measures. TCM's need to be spaced 200 to 300 feet apart so vehicles will not have sufficient distance to accelerate between measures.

Other considerations when deciding which TCM's to install include snow removal maintenance and emergency vehicle access. Some TCM's may decrease the efficiency of both snow removal and/or emergency vehicle access, for example speed humps or tables, etc.

## Installation of Traffic Calming Measures

The City will base its decision to implement TCM's on engineering merits of a TCM application, as opposed to the results of a TCM popularity contest between neighborhoods. An engineering study documenting the need for such measures and the nature of the traffic problem via speed and volume measurements will be the determining factor.

The City will then determine if any TCM's are capable of solving the problem and matching the terrain, climate, and nature of the street in question. Based on need and the tools available, the City will implement one or several measures on a temporary basis subject to performance evaluations and neighborhood review. Before implementing these improvements on a more permanent basis, the City will compare the before and after results for speed and volume changes to see if the TCM's have performed as expected.

In order to make any of the TCM's effective, traffic calming must be community based and as wide spread as possible. For example, the repercussions of traffic calming on one street can result in higher speeds on adjacent streets due to a shift in travel patterns. The need for a community based traffic
calming plan is fundamental to the quality of life for the citizens of the community; hence, the City will produce a more detailed and formal traffic calming plan as needs arise to more specifically address appropriate applications, obtain warrants for the installation of different TCM's, and outline suitable installation procedures of different TCM's.

As Pleasant Grove City develops a traffic calming plan and implements TCM's, it will consult the latest engineering information available to ensure that the plan contains the latest and best guidelines. ITE is the definitive resource on traffic calming issues and produces a significant amount of literature on the subject. A complete discussion on the latest TCM's and related issues are found at http://www.ite.org/traffic/index.asp.

## Access Management

Access management is the practice of coordinating the location, number, spacing, and design of access points to minimize site access conflicts and maximize the traffic capacity and safety of a roadway. Uncoordinated growth along major travel corridors often results in strip development and a proliferation of access points. In many of these instances, each individual development along the corridor has its own access driveway. Numerous access points along major travel corridors create unnecessary conflicts between turning and through traffic which causes delays and accidents. Numerous benefits are derived from controlling the location and number of access points to a roadway. Those benefits include:

- Improving overall roadway safety
- Reducing the total number of vehicle trips
- Decreasing interruptions in traffic flow
- Minimizing traffic delays and congestion
- Maintaining roadway capacity
- Extending the useful life of roads
- Avoiding costly highway projects
- Improving air quality
- Encouraging compact development patterns
- Improving access to adjacent land uses
- Enhancing pedestrian and bicycle facilities

Guidelines regarding access management throughout Pleasant Grove are referenced in the Appendix.

## Corridor Preservation

Corridor preservation is an important transportation planning tool that agencies should use and apply to all future transportation corridors. Several new transportation facilities have been identified in this plan. In planning for these future facilities, corridor preservation techniques will be employed. The main purposes of corridor preservation are to:

- Preserve the viability of future options,
- Reduce the cost of these options, and
- Minimize environmental and socio-economic impacts of future implementation.

Corridor Preservation seeks to preserve the right-of-way needed for future transportation facilities and prevent development which might be incompatible with these facilities. This is primarily accomplished by the community's ability to apply land use controls such as zoning and approval of developments. Adoption of the TMP by Pleasant Grove City is a commitment to citizens and future leaders in the community that the identified future corridors will be the ultimate location for transportation facilities.

Perhaps, the most important elements of corridor preservation are ensuring that the corridors are preserved in the correct location and that they meet the applicable design and right-of-way standards for the type of facility being preserved. As the master plan does not define the exact alignment of each future corridor, it becomes the responsibility of the City to make sure that the corridors are correctly preserved. This will have to be accomplished through the engineering and planning reviews done within the City as development and annexation requests are approved that involve properties within or adjacent to the future corridors.

## Corridor Preservation Techniques

Some examples of specific corridor preservation techniques that may be most beneficial and easily implemented include the following:

- Developer Incentives and Agreements: Public agencies can offer incentives in the form of tax abatements, density credits, or timely site plan approvals to developers who maintain property within planned transportation corridors in an undeveloped state.
- Exactions: As development proposals are submitted to the City for review, efforts can be made to exact land identified within the future corridors. Exactions are similar to impact fees, except they are paid with land rather than cash.
- Fee Simple Acquisitions: This will most likely consist of hardship purchases or possible city acquisition of property identified within the corridors. Parcels obtained in fee title can later be sold at market value to the owner of the transportation facility when construction begins.
- Transfer of Development Rights and Density Transfers: Government entities can provide incentives for developers and landowners to participate in corridor preservation programs using the transfer of development rights and density transfers. This is a powerful tool in that there seldom is any capital cost to local governments.
- Land Use Controls: This method allows government entities to use police power to regulate intensity and types of land use. Zoning ordinances are the primary controls over land use and the most important land use tools available for use in corridor preservation programs.
- Purchase of Options and Easements: Options and easements allow government agencies to purchase interests in property that lies within highway corridors without obtaining full title of the land. Usually, easements are far less expensive than fee title acquisitions.


## Traffic Impact Studies

As growth occurs, the City needs to evaluate the impacts of future developments on the surrounding transportation networks prior to giving approval to build. This can be accomplished by requiring that a Traffic Impact Study (TIS) be performed for any development that will generate in excess of 100 peakhour trips. Examples of different land uses that will generate in excess of 100 peak-hour trips can be seen in Table 1. A TIS will allow the City to determine the site specific impacts of a development including internal site circulation, access issues, and adjacent roadway and intersection impacts. In addition, a TIS will assist in defining possible impacts to the overall transportation system in the vicinity of the development. The area and items to be evaluated in a TIS include key intersections and roads as determined by the City Engineer on a case by case basis. Other items that need to be included in a TIS include:

- A description of the project site and study area boundaries including a site plan and study area map showing the future project access locations and connections to the adjacent road network.
- A description of existing and planned land uses within the study area including a discussion of the project land use.
- A description of existing and future key roadways and intersections in the study area including lane configurations and traffic controls.
- A discussion of trip generation, distribution, and assignment methodologies and assumptions.
- A level of service (LOS) and capacity analysis of existing traffic levels and conditions for key roadway segments and intersections.
- A LOS and capacity analysis of background traffic levels and conditions (existing traffic plus additional traffic projected from normal growth rates and from other known developments in the study area at the time of completion) for key roadway segments and intersections.
- A LOS and capacity analysis of background plus project traffic levels and conditions (background traffic plus projected traffic associated with the new project) for key roadway segments and intersections.
- A safety analysis for key roadways and intersections including applicable accident histories.
- Any applicable yield sign, stop sign, multi-way stop signs, and traffic signal warrant analyses.
- A determination of the street system's ability to accommodate projected traffic levels.
- An identification of impacts to the existing street system as a result of the project.
- A discussion of improvements to be implemented as part of the project to accommodate project traffic such as roadway and intersection widening to provide exclusive turn lanes or modifications to traffic controls.
- A discussion of mitigation measures to be implemented to restore or improve traffic operations to an acceptable LOS on any key roadway segments or at key intersections within the study area.

Each TIS will be conducted by a qualified Traffic Engineer chosen by the City at the developer's cost. The City Engineer will determine the scope of each TIS and review its contents once complete and provide comments. Upon receiving approval from the City Engineer, the TIS requirement related to the development will be satisfied. If a developer feels that his or her project does not meet the requirements to have a TIS completed, then the developer will need to provide documentation stating his or her case which will be reviewed by the City Engineer.

A TIS may be required for developments that do not meet the trip generation threshold ( $\geq 100$ peakhour trips) if there are unique or controversial issues associated with the project that the City feels needs to be addressed. These projects will be identified and evaluated on a case by case basis.

## Agency Coordination

As many of the roads in Pleasant Grove City are either owned by or connect into roads that are owned by other agencies such as UDOT, neighboring cities, and Utah County, a close working relationship needs to be maintained between these different jurisdictions and the City to ensure that roadway projects are not only coordinated but consistent.

## Impact Fees

Impact fees are a way for a community to obtain funds to assist in the constructions of infrastructure improvements that are needed to serve new growth. The premise behind impact fees is that if no new development was allowed, the existing infrastructure would adequately serve the existing level of development in the City. Therefore, new development should pay for the fraction of improvements that are required because of new growth. Impact fees are assessed for many types of infrastructure and facilities that are provided by a community such as roads, sewer, water, parks, and trails. According to state law, impact fees cannot be used to correct existing deficiencies in a system, only to fund growth related capital improvements.

There are many ways to quantify the impact of new growth on the transportation system in Pleasant Grove City. One way to assess the impact is to consider all the needed transportation improvements and then eliminate the cost of those improvements that are necessary to correct existing deficiencies. Another way to assess the impacts of new growth is to estimate the amount of total traffic growth on
each road which is projected to occur due to new development and then apply this percentage to the total cost of all needed improvements thus identifying the cost of the improvements that are eligible for funding through impact fees. The improvements outlined in the TMP can be used to identify growth related improvements and form the basis for a comprehensive impact fee program.

## Planned Roadway Improvements

A number of roadway improvements will occur between now and the year 2040. These planned improvements are based on travel demand volume predictions and available capacity of each roadway. Each of these improvements needs to be implemented as a result of increasing traffic volumes due to future development. A citywide Transportation Improvement Program (TIP) summarizing the intersection and roadway improvements will be discussed in a later chapter. The TIP will outline the type, extent, jurisdiction(s) and estimated timeline for each of the new improvements.

## Public Involvement Process

Public involvement is a key element to producing an effective and worthwhile transportation master plan for the City to implement and follow. Collecting and responding to public input allows City staff and decision-makers to consider all the issues and to address them appropriately. An intensive effort was put forth to collect public comment regarding this particular update of the City's transportation master plan, including the following actions:

- Posted a draft of the transportation master plan document on the City's website for anyone to download and review.
- Held a public open house on Wednesday, May $13^{\text {th }}, 2009$. Approximately 80 residents signed in at the open house, of which some included couples; as a result the project team estimated that upwards of 100 people attended the open house.
- Advertized the public open house by placing announcements on utility bills and the City's newsletter, posting details on the City's website, and mailing individual postcard invitations to any property owners whose property lied within 200 feet of a planned roadway widening or new roadway alignment (over 1,300 postcards were mailed).
- Provided a comment form at the public open house for residents to communicate their concerns and approval of specific elements of the new plan.
- Presented a progress report of the transportation master plan update process at both City Council and Planning Commission Meetings on May $26^{\text {th }}$ and May $28^{\text {th }}$, respectively.
- Held final public hearing June $23^{\text {rd }}, 2009$ at a joint session of City Council and Planning Commission.

Public involvement has proven to be a critical element of the transportation planning process. Details of the public involvement effort for this update of the City's transportation master plan can be found in the appendix of this report. Lastly, as the City updates this plan in the future, public input will be collected and taken into account as this plan evolves.

### 6.0 Potential Funding Sources

Funding sources for transportation are essential if Pleasant Grove City's planned improvements are to be built. Presently there are three main sources of revenue available to Pleasant Grove City: federal funding, state funding, and local general funding. The following paragraphs further describe these various transportation funding sources available to the City.

## Federal Funding

Federal monies are available to cities and counties through the federal-aid program. The funds are administered by the Utah Department of Transportation (UDOT). In order to be eligible, a project must be listed on the five-year Statewide Transportation Improvement Program (STIP).

The Surface Transportation Program (STP) funds projects for any roadway with a functional classification of a collector street or higher. STP funds can be used for both rehabilitation and new construction. The Joint Highway Committee programs a portion of the STP funds for projects around the State in urban areas. Another portion of the STP funds can be used for projects in any area of the State at the discretion of the State Transportation Commission. Transportation Enhancement funds are allocated based on a competitive application process. The Transportation Enhancement Committee reviews the applications and then a portion of those are passed to the State Transportation Commission. Transportation enhancements include 12 categories ranging from historic preservation, bicycle and pedestrian facilities, and water runoff mitigation. Other federal and state trails funds are available from the Utah State Parks and Recreation Program.

## State Funding

The distribution of State Class B and C Program monies is established by State Legislation and is administered by the State Department of Transportation. Revenues for the program are derived from State fuel taxes, registration fees, driver license fees, inspection fees, and transportation permits. Seventy-five percent of these funds are kept by UDOT for their construction and maintenance programs. The rest is made available to counties and cities.

Class B and C funds are allocated to each city and county by a formula based on population, road mileage, and land area. Class B funds are given to counties, and Class C funds are given to cities and towns. Class B and C funds can be used for maintenance and construction projects; however, thirty
percent of those funds must be used for construction or maintenance projects that exceed $\$ 40,000$. The remainder of these funds can be used for matching federal funds or to pay the principal, interest, premiums, and reserves for issued bonds.

## Local Funding

Most cities utilize general fund revenues for their transportation programs. Another option for transportation funding includes the creation of special improvement districts. These districts are organized for the purpose of funding a single specific project that benefits an identifiable group of properties. Another source of funding used by cities includes revenue bonding for projects felt to benefit the entire community.

Private interests often provide resources for transportation improvements. Developers construct the local streets within subdivisions and often dedicate right-of-way and participate in the construction of collector/arterial streets adjacent to their developments. Developers can also be considered a possible source of funds for projects through the use of impact fees. These fees are assessed as a result of the impacts a particular development will have on the surrounding roadway system, such as the need for traffic signals or street widening.

### 7.0 Transportation Improvement Program

One of the main purposes of the TMP is to plan a street classification system that will serve Pleasant Grove City's transportation needs for the next 20 years. Designating a roadway functional classification system allows the City to preserve the necessary right-of-way along individual roadway corridors for the future upgrade of the existing infrastructure to the master planned standard. After evaluating the roadway network and projecting future travel demands on each of those roadways, a roadway functional classification was developed (Figure 14).

After evaluating the projected travel demand and future deficiencies on the City's roadway network, a transportation improvement program (TIP) was developed. The TIP indicates which improvements will be needed at particular times, provides a planning level cost estimate for each improvement, and identifies potential funding sources (see Table 12 and Figure 23). If used correctly, this can be a valuable tool for City officials in the budgeting and planning process as the TIP outlines the anticipated timing, costs, and potential funding sources for transportation improvements.

Improvements are separated into the following categories: short range ( 0 to 5 years); medium range ( 5 to 10 years); and long range ( 10 to 20 years). Regardless of improvements or enhancements to alter transportation modes, private single-occupant vehicles will remain as the predominant form of transportation in Pleasant Grove City for the foreseeable future. As such, most of the upcoming improvements involve roadway infrastructure that are anticipated to accommodate future traffic demand projections and maintain acceptable operating conditions.

Several projects do not include planning level cost estimates. These projects are either already funded, currently under construction, anticipated to be constructed by other jurisdictions or private developers and not require local funds, or are not far enough into the conceptual design stages to determine costs.

As development continues throughout Pleasant Grove City, the TMP and TIP will be consulted to identify improvements that may benefit from work or funds required by individual developers. This would ensure that the correct amount of right-of-way is preserved. In addition, this would assist in identifying projects that the developer may be required to construct or contribute to as part of his or her required on- and/or off-site improvements. However, several projects are not anticipated to be part of any new developments or will not be able to wait for development to occur before the improvements are needed. These projects may not be able to benefit from private funding sources and the City will have to come up with other funding alternatives for these projects.

Finally, the TIP must be reviewed and updated on a continual basis in order to work as designed. The TIP will be modified by deleting projects that have been completed or are no longer considered a priority, as well as adding new projects that were not previously identified. A good time for an annual review and update is in January as this provides sufficient time for any changes to the TIP to be incorporated into the budget planning process for that year. Continual maintenance is critical for the TIP to remain effective over time.

Table 12 Pleasant Grove City Transportation Improvement Program

| Pleasant Grove City Transportation Improvement Program (TIP) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Type of Improvement ${ }^{1}$ | Roadway or Location | From | то | Jurisdiction(s) | Potential Funding Source |
| 0-5 Year Improvements |  |  |  |  |  |
| Widen to 3 Lanes | 100 East | 2600 North | State Street | Pleasant Grove/ UDOT | F, S, C, O |
| Widen to 5 Lanes/ New Traffic Signal | PG Boulevard | 2000 West | 100 South | Pleasant Grove | C, 0 |
| Widen to 3 Lanes/ Intersection Realignment/ New Traffic Signal | 600 West | Center Street | 1100 North | Pleasant Grove | C, 0 |
| Widen to 5 Lanes/ New Traffic Signal | 2000 West | State Street | 1100 North | Pleasant Grove/ <br> American Fork | C, 0 |
| Widen to 7 Lanes/ New Traffic Signal | State Street | American Fork | Lindon | UDOT | F, S, C, O |
| New Alignment | 750 West | 220 South | 1000 South | Pleasant Grove | C, 0 |
| New Alignment | 500 S | 750 West | 250 West | Pleasant Grove | C, 0 |
| Alignment Extension | 800 North | Main Street | 100 East | Pleasant Grove | C, 0 |
| Alignment Extension | 1000 South | Locust Ave | 1150 East | Pleasant Grove/ Lindon | C, 0 |
| Alignment Extension/ New Railroad Crossing | Garden Dr | State Street | 1000 West | Pleasant Grove | C, 0 |


| Pleasant Grove City Transportation Improvement Program (TIP) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Type of Improvement ${ }^{1}$ | Roadway or Location | From | To | Jurisdiction(s) | Potential Funding Source ${ }^{2}$ |
| New Alignment | Granite Way | PG Boulevard | 1300 West | Pleasant Grove | C, 0 |
| 5-10 Year Improvements |  |  |  |  |  |
| Restriping/ <br> Realignment/ Widening to 3 Lanes/ Potential Roundabouts | 1000 South | State Street | Lindon | Pleasant Grove/ Lindon | C, 0 |
| Widen to 3 Lanes | 100 East | 2600 North | Cedar Hills | UDOT | F, S, C, O |
| Widen to 3 <br> Lanes/ New <br> Alignment/ <br> New Traffic Signals | 220 South (Battle Creek Drive) | American Fork | State Street | Pleasant Grove | C, 0 |
| Widen to 3 Lanes/ Potential Roundabouts | 1300 West | 2600 North | PG Boulevard | Pleasant Grove | C, 0 |
| Widen to 3 Lanes/ Intersection Realignment/ New Traffic Signal | 2600 North | American Fork | 100 East | Pleasant Grove | C, 0 |
| Widen to 7 Lanes | PG Boulevard | 2000 West | I-15 <br> Interchange | Pleasant Grove | F, S, C, O |
| Alignment Extension | 800 North | 1300 West | 1100 West | Pleasant Grove | C, 0 |
| Alignment Extension | 500 South | American Fork | PG Boulevard | Pleasant Grove | C, 0 |
| Realignment/ New Traffic Signal | 1300 West | 700 South | $\begin{gathered} 1000 \mathrm{~S}(\mathrm{PG}) / \\ 700 \mathrm{~N} \\ \text { (Lindon) } \end{gathered}$ | Pleasant Grove/Lindon | C, 0 |
| Alignment Extension | 900 West | 1800 North | 1600 North | Pleasant Grove | C, 0 |
| New Alignment | Mill Creek Road | 3300 North | $\begin{aligned} & 3700 \mathrm{~N} \text { (PG)/ } \\ & \text { Avanyu Dr } \\ & \text { (Cedar Hills) } \end{aligned}$ | Pleasant Grove | C, 0 |


| Pleasant Grove City Transportation Improvement Program (TIP) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Type of Improvement ${ }^{1}$ | Roadway or Location | From | To | Jurisdiction(s) | Potential Funding Source ${ }^{2}$ |
| Potential Roundabout | 600 West/ 1800 North |  |  | Pleasant Grove | C, 0 |
| Potential Roundabout | 600 West/ <br> 1100 North |  |  | Pleasant Grove | C, 0 |
| 10-20 Year Improvements |  |  |  |  |  |
| Widen to 3 Lanes | 700 South | 1300 West | State Street | Pleasant Grove | C, 0 |
| Alignment Extension | 300 East | 1700 North | 1800 North | Pleasant Grove | C, 0 |
| Alignment Extension | Murdock Dr | 500 East | 1400 North | Pleasant Grove | C, 0 |
| Alignment Extension | Murdock Dr | 500 North | 300 North | Pleasant Grove | C, 0 |
| Alignment Extension | 250 West | 700 South | 1000 South | Pleasant Grove | C, 0 |
| New Alignment | 1000 West | 700 South | 1000 South | Pleasant Grove | C, 0 |
| New Alignment | 1100 West | 500 South | 700 South | Pleasant Grove | C, 0 |
| New <br> Alignment/ New Traffic Signal | 500 South | PG Boulevard | 220 South | Pleasant Grove | C, 0 |
| New Alignment | 1700 West | State Street | 2000 West | Pleasant Grove | C, 0 |
| Widen to 5 Lanes/ New Traffic Signal | 100 East | State Street | Cedar Hills | Pleasant Grove/ UDOT | F, S, C, O |
| New <br> Alignment/ Potential Roundabout | Locust Ave <br> Realignment |  |  | Pleasant Grove | C, 0 |
| Intersection Realignment/ New Traffic Signal | 100 E/Geneva Rd/State St |  |  | Pleasant Grove/ UDOT | F, S, C, O |
| Potential Signal | $500 \mathrm{~S} / 2000 \mathrm{~W}$ |  |  | Pleasant Grove | C, 0 |
| Potential Roundabout | 900 West/ <br> 2600 North |  |  | Pleasant Grove | C, 0 |


| Pleasant Grove City Transportation Improvement Program (TIP) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Type of <br> Improvement ${ }^{1}$ | Roadway or <br> Location | From | To | Jurisdiction(s) | Potential <br> Funding <br> Source $^{2}$ |
| Potential <br> Roundabout | 600 West/ <br> 2600 North |  |  | Pleasant Grove | $\mathrm{C}, \mathrm{O}$ |
| Potential <br> Roundabout | 300 East/200 <br> South |  | Pleasant Grove | $\mathrm{C}, \mathrm{O}$ |  |
| Potential <br> Roundabout | Murdock Dr/ <br> 200 South |  | Pleasant Grove | $\mathrm{C}, \mathrm{O}$ |  |
| Potential <br> Roundabout | 900 West/ <br> 4000 North |  | Pleasant Grove | $\mathrm{C}, \mathrm{O}$ |  |

[^0]

# Appendix A: Raw Traffic Data 

## TRAFFIC COUNT SUMMARY




## TRAFFIC COUNT SUMMARY



TRAFFIC COUNT SUMMARY

City: Pleasant Grove
N-S Street: $\mathbf{7 0 0} \mathbf{S}$
Date: Thursday, August 07, 2008 Begin Time: 07:00 AM Interval Length: 15 min

HORROCKS
E N G I ${ }^{\prime} \|$ E E E R S

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | $\begin{array}{\|c\|} \hline \text { Total } \\ \text { All Moves } \\ \hline \end{array}$ | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM | 0 | 143 | 0 | 3 | 2 | 0 | 0 | 0 | 21 | 87 | 0 | 1 | 0 | 0 | 0 | 0 | 254 |  |
| 07:15 AM | 07:30 AM | 0 | 169 | 0 | 4 | 0 | 0 | 0 | 0 | 19 | 82 | 0 | 2 | 0 | 0 | 0 | 0 | 272 |  |
| 07:30 AM | 07:45 AM | 0 | 224 | 0 | 1 | 2 | 0 | 0 | 1 | 18 | 80 | 0 | 8 | 0 | 0 | 0 | 0 | 333 |  |
| 07:45 AM | 08:00 AM | 0 | 183 | 0 | 2 | 2 | 0 | 0 | 0 | 37 | 120 | 0 | 4 | 0 | 0 | 0 | 0 | 346 | 1205 |
| 08:00 AM | 08:15 AM | 0 | 138 | 0 | 2 | 3 | 0 | 0 | 0 | 16 | 95 | 0 | 2 | 0 | 0 | 0 | 0 | 254 | 1205 |
| 08:15 AM | 08:30 AM | 0 | 195 | 0 | 4 | 3 | 0 | 0 | 0 | 25 | 103 | 0 | 6 | 0 | 0 | 0 | 0 | 332 | 1265 |
| 08:30 AM | 08:45 AM | 0 | 211 | 0 | 3 | 9 | 0 | 0 | 0 | 19 | 121 | 0 | 6 | 0 | 0 | 0 | 0 | 366 | 1298 |
| 08:45 AM | 09:00 AM | 0 | 195 | 0 | 6 | 2 | 0 | 0 | 0 | 15 | 119 | , | 5 | 0 | 0 | 0 | 0 | 336 | 1288 |



| OPTIONAL <br> Adjustment Factors |  |
| :--- | ---: |
| Monthly: | 1.00 |
| Daily: | 1.00 |
| Interval: | 1.00 |
| Count: | 1.00 |
| Total: | 1 |


| ADJUSTED PEAK HOUR TRAFFIC VOLUMES |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Southbound |  |  | Westbound |  |  | Northbound |  |  | Eastbound |  |  |
| Left | Thru | Right |
| 0 | 727 | 0 | 0 | 0 | 17 | 0 | 439 | 97 | 0 | 0 | 0 |
| 727 |  |  | 17 |  |  | 536 |  |  | 0 |  |  |
| Truck |  | 2\% | Trucks |  | 0\% | Trucks: |  | 3\% | Trucks: |  | 0\% |
| Peak |  |  | 45 AM | 8:45 AM |  | Peak Vol: |  | 1280 | PHF: |  | 0.87 |

## TRAFFIC COUNT SUMMARY

E-W Street: 2000 West
HORROCKS
E $N$ G $\quad$ I $\|_{N}^{N}$ E
Counted by: MCM

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:15 AM | 07:30 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:30 AM | 07:45 AM | 37 | 1 | 67 | 1 | 56 | 93 | 0 | 2 | 1 | 1 | 3 | 0 | 3 | 100 | 41 | 6 | 411 |  |
| 07:45 AM | 08:00 AM | 85 | 1 | 108 | 3 | 75 | 122 | 0 | 6 | 1 | 1 | 1 | 0 | 5 | 114 | 44 | 6 | 569 | 980 |
| 08:00 AM | 08:15 AM | 90 | 1 | 143 | 1 | 87 | 134 | 2 | 10 | 1 | 0 | 5 | 0 | 3 | 103 | 73 | 5 | 657 | 1637 |
| 08:15 AM | 08:30 AM | 52 | 1 | 102 | 1 | 83 | 103 | 0 | 7 | 5 | 0 | 2 | 0 | 2 | 125 | 65 | 9 | 556 | 2193 |
| 08:30 AM | 08:45 AM | 77 | 2 | 116 | 2 | 69 | 103 | 1 | 2 | 4 | 2 | 8 | 3 | 3 | 86 | 74 | 6 | 556 | 2338 |
| 08:45 AM | 09:00 AM | 82 | 2 | 89 | 1 | 85 | 124 | 1 | 8 | 6 | 3 | , | 1 | 6 | 117 | 67 | 9 | 600 | 2369 |




# TRAFFIC COUNT SUMMARY 

E-W Street: State Street

## HORROCKS <br> E N G I $\stackrel{\| l l}{N}$ E E R S

Street: Pleasant Grove Blvd Date: Monday, August 04, 2008 Begin Time: 07:00 AM

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM | 3 | 72 | 18 | 0 | 24 | 79 | 2 | 0 | 1 | 57 | 5 | 0 | 7 | 24 | 9 | 0 | 301 |  |
| 07:15 AM | 07:30 AM | 3 | 78 | 16 | 0 | 25 | 81 | 9 | 0 | 1 | 61 | 10 | 0 | 21 | 40 | 5 | 0 | 350 |  |
| 07:30 AM | 07:45 AM | 9 | 130 | 17 | 0 | 17 | 104 | 11 | 0 | 4 | 101 | 13 | 0 | 23 | 29 | 9 | 0 | 467 |  |
| 07:45 AM | 08:00 AM | 6 | 132 | 19 | 0 | 28 | 83 | 9 | 0 | 6 | 95 | 10 | 0 | 24 | 46 | 10 | 0 | 468 | 1586 |
| 08:00 AM | 08:15 AM | 12 | 99 | 19 | 0 | 19 | 55 | 13 | 0 | 3 | 87 | 11 | 0 | 13 | 27 | 9 | 0 | 367 | 1652 |
| 08:15 AM | 08:30 AM | 12 | 110 | 19 | 0 | 37 | 78 | 4 | 0 | 3 | 111 | 19 | 0 | 17 | 39 | 8 | 0 | 457 | 1759 |
| 08:30 AM | 08:45 AM | 5 | 119 | 23 | 0 | 28 | 89 | 14 | 0 | 8 | 131 | 28 | 0 | 17 | 58 | 12 | 0 | 532 | 1824 |
| 08:45 AM | 09:00 AM | 9 | 131 | 36 | 0 | 48 | 66 | 9 | 1 | 2 | 135 | 19 | 0 | 13 | 56 | 20 | 0 | 545 | 1901 |



| OPTIONAL |  |
| :--- | ---: |
| Adjustment Factors |  |
| Monthly: | 1.00 |
| Daily: | 1.00 |
| Interval: | 1.00 |
| Count: | 1.00 |
| Total: | 1 |



|  |  |  |  |  |  |  | AF |  | OUN | T S | M | R |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | City: <br> N-S Street: | Pleasa | Grov |  |  |  | Street | enev | Road/ | Main St |  |  |  |  |  |  | RR | $\mathrm{CK}^{\text {C }}$ |  |
|  | Date: | Tuesday | , Sep | nber | 9, 2008 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Begin Time: | 07:00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | E E R |  |
|  | rval Length: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Time | Interval | Right | Thru | Left | Trucks | Total | Hourly |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 | All Moves | Totals |
| 07:00 AM | 07:15 AM | 28 | 48 | 0 | 0 | 0 | 27 | 12 | 0 | 11 | 55 | 10 | 0 | 0 | 13 | 22 | 0 | 226 |  |
| 07:15 AM | 07:30 AM | 29 | 64 | 1 | 0 | 1 | 67 | 14 | 1 | 15 | 59 | 11 | 0 | 2 | 16 | 28 | 0 | 308 |  |
| 07:30 AM | 07:45 AM | 44 | 103 | 4 | 0 | 2 | 66 | 19 | 0 | 6 | 82 | 13 | 0 | 4 | 16 | 28 | 0 | 387 |  |
| 07:45 AM | 08:00 AM | 58 | 108 | 1 | 0 | 10 | 104 | 33 | 0 | 17 | 86 | 17 | 0 | 10 | 31 | 46 | 0 | 521 | 1442 |
| 08:00 AM | 08:15 AM | 83 | 116 | 0 | 0 | 3 | 89 | 31 | 0 | 12 | 81 | 10 | 0 | 5 | 27 | 32 | 0 | 489 | 1705 |
| 08:15 AM | 08:30 AM | 61 | 94 | 0 | 0 | 4 | 74 | 32 | 0 | 16 | 90 | 10 | 0 | 6 | 42 | 38 | 0 | 467 | 1864 |
| 08:30 AM | 08:45 AM | 58 | 97 | 1 | 0 | 2 | 72 | 25 | 0 | 12 | 60 | 8 | 0 | 5 | 23 | 31 | 0 | 394 | 1871 |
| 08:45 AM | 09:00 AM | 47 | 90 | 1 | 0 | 4 | 63 | 19 | 0 | 17 | 77 | 12 | 0 | 6 | 51 | 25 | 0 | 412 | 1762 |



TRAFFIC COUNT SUMMARY
E-W Street: State Street
Counted by: MCM

HORROCKS
E $N$ G I I ${ }^{N}$ E

City: Pleasant Grove
S Street: Main Street/Geneva Road Date: Thursday, March 12, 2009 Begin Time: 07:00 AM Interval Length: 15 min

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:15 AM | 07:30 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:30 AM | 07:45 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:45 AM | 08:00 AM | 0 | 124 | 90 | 9 | 74 | 0 | 10 | 3 | 12 | 59 | 0 | 4 | 0 | 0 | 0 | 0 | 376 | 376 |
| 08:00 AM | 08:15 AM | 0 | 105 | 86 | 4 | 82 | 0 | 9 | 2 | 9 | 44 | 0 | 1 | 0 | 0 | 0 | 0 | 338 | 714 |
| 08:15 AM | 08:30 AM | 2 | 110 | 84 | 6 | 81 | 0 | 7 | 3 | 7 | 63 | 0 | 3 | 0 | 0 | 0 | 0 | 360 | 1074 |
| 08:30 AM | 08:45 AM | 0 | 83 | 90 | 5 | 65 | 0 | 17 | 3 | 3 | 56 | 0 | 4 | 0 | 0 | 0 | 0 | 321 | 1395 |
| 08:45 AM | 09:00 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 1019 |



## TRAFFIC COUNT SUMMARY




E-W Street: $\mathbf{1 0 0 0}$ South
Counted by: TN \& JP

HORROCKS
E N G I $\quad \|$ In

City: Pleasant Grove
N-S Street: State Street
Date: Thursday, March 05, 2009
Begin Time: 07:00 AM
Interval Length: 15 min

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:15 AM | 07:30 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:30 AM | 07:45 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:45 AM | 08:00 AM | 10 | 220 | 3 | 3 | 11 | 70 | 15 | 0 | 12 | 146 | 47 | 4 | 32 | 20 | 10 | 1 | 601 | 601 |
| 08:00 AM | 08:15 AM | 22 | 234 | 11 | 4 | 11 | 38 | 11 | 0 | 13 | 130 | 34 | 4 | 25 | 24 | 10 | 2 | 569 | 1170 |
| 08:15 AM | 08:30 AM | 12 | 215 | 12 | 1 | 7 | 50 | 8 | 0 | 7 | 100 | 33 | 3 | 40 | 25 | 16 | 2 | 530 | 1700 |
| 08:30 AM | 08:45 AM | 11 | 207 | 6 | 5 | 9 | 42 | 18 | 0 | 11 | 148 | 37 | 3 | 37 | 16 | 12 | 4 | 561 | 2261 |
| 08:45 AM | 09:00 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 1660 |



## TRAFFIC COUNT SUMMARY




E-W Street: Huntsman Lane
Counted by: TY

HORROCKS
E N G I $\quad \|$ In

City: Pleasant Grove
N-S Street: 900 West
Date: Tuesday, February 24, 2009
Begin Time: 07:00 AM
Interval Length: 15 min

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | Total <br> All Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:15 AM | 07:30 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:30 AM | 07:45 AM |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.1 |  |  | 0.1 |  |
| 07:45 AM | 08:00 AM |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.2 |  |  | 0.2 | 0.3 |
| 08:00 AM | 08:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.3 |  |  | 0.3 | 0.6 |
| 08:15 AM | 08:30 AM | 0 | 11 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 5 | 0 | 0 | 1 | 8 | 0 | 0 | 27 | 27.6 |
| 08:30 AM | 08:45 AM | 0 | 6 | 0 | 0 | 0 | 8 | , | 0 | , | 3 | 4 | 0 | , | 3 | 0 | 0 | 25 | 52.5 |
| 08:45 AM | 09:00 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 52.3 |



## TRAFFIC COUNT SUMMARY




TRAFFIC COUNT SUMMARY
E-W Street: $\mathbf{8 0 0}$ North
Counted by: TY

HORROCKS
E N G I $\quad \|$ In

City: Pleasant Grove
N-S Street: 600 West Date: Thursday, February 26, 2009 Begin Time: 07:00 AM Interval Length: 15 min

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly <br> Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:15 AM | 07:30 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:30 AM | 07:45 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:45 AM | 08:00 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.1 |  | 0.1 | 0.1 |
| 08:00 AM | 08:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.2 |  | 0.2 | 0.3 |
| 08:15 AM | 08:30 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.3 |  | 0.3 | 0.6 |
| 08:30 AM | 08:45 AM | 1 | 37 | 0 | 0 | 0 | 0 | 3 | 0 | 1 | 12 | 1 | 0 | 3 | 0 | 0 | 0 | 58 | 58.6 |
| 08:45 AM | 09:00 AM | 2 | 63 | 1 | 0 | 1 | 7 | 4 | 0 | 0 | 14 | 1 | 0 | 4 | 3 | 0 | 0 | 100 | 158.5 |



| OPTIONAL |  |
| :--- | ---: |
| Adjustment Factors |  |
| Montly: | 1.00 |
| Daily: | 1.00 |
| Interval: | 1.00 |
| Count: | 2.57 |
| Total: | 2.57 |



## TRAFFIC COUNT SUMMARY




## TRAFFIC COUNT SUMMARY

HORROCKS

E-W Street: $\mathbf{1 0 0 0}$ South
ENGIN NERUS
Counted by: MCM

| Time Interval |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:15 AM | 07:30 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:30 AM | 07:45 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:45 AM | 08:00 AM | 56 | 28 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 21 | 10 | 1 | 2 | 0 | 11 | 0 | 129 | 129 |
| 08:00 AM | 08:15 AM | 31 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 8 | 0 | 4 | 0 | 13 | 0 | 95 | 224 |
| 08:15 AM | 08:30 AM | 33 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 7 | 1 | 5 | 0 | 19 | 2 | 90 | 314 |
| 08:30 AM | 08:45 AM | 53 | 29 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 7 | 11 | 1 | 4 | 0 | 6 | 0 | 111 | 425 |
| 08:45 AM | 09:00 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 296 |



| OPTIONAL |  |
| :--- | ---: |
| Adjustment Factors |  |
| Monthly: | 1.00 |
| Daily: | 1.00 |
| Interval: | 1.00 |
| Count: | 1.00 |
| Total: | 1 |



## TRAFFIC COUNT SUMMARY

| City: Pleasant Grove <br> N-S Street: $\mathbf{3 0 0}$ East <br> Date: Wednesday, February 18, 200 <br> Begin Time: 07:00 AM |  |  |  |  |  | E-W Street: Center Street Counted by: KA |  |  |  | HORROCKS |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  | I | E E R S |  |
| Interval Length: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | , | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:15 AM | 07:30 AM | 15 | 66 | 0 | 0 | 2 | 33 | 6 | 0 | 1 | 14 | 11 | 0 | 8 | 10 | 2 | 0 | 168 |  |
| 07:30 AM | 07:45 AM | 20 | 94 | 1 | 0 | 0 | 46 | 7 | 0 | 1 | 17 | 8 | 0 | 18 | 14 | 2 | 0 | 228 |  |
| 07:45 AM | 08:00 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.1 |  | 0.1 | 396.1 |
| 08:00 AM | 08:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.2 |  | 0.2 | 396.3 |
| 08:15 AM | 08:30 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.3 |  | 0.3 | 228.6 |
| 08:30 AM | 08:45 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 0.6 |
| 08:45 AM | 09:00 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 0.5 |



City: Pleasant Grove
N-S Street: Locust Avenue Date: Wednesday, February 18, 2009 Begin Time: 07:00 AM Interval Length: 15 min

HORROCKS
E $N$ G G I $\stackrel{\|}{N}$ N

| Time Interval |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | Total <br> All Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:15 AM | 07:30 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:30 AM | 07:45 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:45 AM | 08:00 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.1 |  | 0.1 | 0.1 |
| 08:00 AM | 08:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.2 |  | 0.2 | 0.3 |
| 08:15 AM | 08:30 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.3 |  | 0.3 | 0.6 |
| 08:30 AM | 08:45 AM | 0 | 0 | 0 | 0 | 0 | 36 | 10 | 0 | 6 | 0 | 23 | 0 | 9 | 21 | 0 | 0 | 105 | 105.6 |
| 08:45 AM | 09:00 AM | 0 | 0 | 0 | 0 | 0 | 51 | 9 | 0 | 6 | 0 | 18 | 0 | 18 | 38 | 0 | 0 | 140 | 245.5 |



## TRAFFIC COUNT SUMMARY




TRAFFIC COUNT SUMMARY

City: Pleasant Grove
N -S Street: $\mathbf{7 0 0}$ East Date: Wednesday, February 18, 2009 Begin Time: 07:00 AM Interval Length: 15 min

HORROCKS
E $N$ G I ${ }^{\prime}$

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:15 AM | 07:30 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:30 AM | 07:45 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:45 AM | 08:00 AM | 2 | 19 | 3 | 0 | 6 | 21 | 3 | 0 | 1 | 6 | 2 | 0 | 4 | 9 | 1 | 0 | 77 | 77 |
| 08:00 AM | 08:15 AM | 1 | 9 | 2 | 0 | 1 | 19 | 3 | 0 | 1 | 7 | 0 | 0 | 3 | 5 | 1 | 0 | 52 | 129 |
| 08:15 AM | 08:30 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.1 |  | 0.1 | 129.1 |
| 08:30 AM | 08:45 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.2 |  | 0.2 | 129.3 |
| 08:45 AM | 09:00 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.3 |  | 0.3 | 52.6 |



| OPTIONAL |  |
| :--- | ---: |
| Adjustment Factors |  |
| Monthly: | 1.00 |
| Daily: | 1.00 |
| Interval: | 1.00 |
| Count: | 1.92 |
| Total: | 1.92 |



Center St \& 700 E AM.xls

## TRAFFIC COUNT SUMMARY

E-W Street: PG Blvd
Counted by: MCM
HORROCKS

Counted by: MCM
再

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM | 98 | 5 | 0 | 1 | 1 | 103 | 1 | 6 | 1 | 5 | 0 | 1 | 0 | 66 | 48 | 6 | 341 |  |
| 07:15 AM | 07:30 AM | 136 | 2 | 0 | 0 | 1 | 148 | 5 | 2 | 3 | 4 | 0 | 1 | 0 | 77 | 54 | 5 | 438 |  |
| 07:30 AM | 07:45 AM | 171 | 7 | 0 | 0 | 4 | 162 | 10 | 2 | 1 | 3 | 0 | 0 | 0 | 79 | 56 | 2 | 497 |  |
| 07:45 AM | 08:00 AM | 208 | 8 | 1 | 1 | 3 | 180 | 10 | 3 | 4 | 7 | 0 | 1 | 0 | 97 | 87 | 3 | 612 | 1888 |
| 08:00 AM | 08:15 AM | 163 | 9 | 0 | 2 | 6 | 149 | 11 | 2 | 0 | 8 | 0 | 0 | 0 | 76 | 100 | 2 | 526 | 2073 |
| 08:15 AM | 08:30 AM | 147 | 11 | 1 | 0 | 6 | 116 | 3 | 3 | 3 | 4 | 0 | 0 | 0 | 83 | 115 | 3 | 495 | 2130 |
| 08:30 AM | 08:45 AM | 135 | 15 | 2 | 1 | 5 | 150 | 6 | 3 | 6 | 8 | 0 | 1 | 1 | 88 | 69 | 3 | 492 | 2125 |
| 08:45 AM | 09:00 AM | 162 | 7 | 1 | 1 | 9 | 187 | 10 | 3 | 10 | 15 |  | 2 | 1 | 99 | 108 | 3 | 618 | 2131 |



## TRAFFIC COUNT SUMMARY

E-W Street: $\mathbf{1 1 0 0}$ North
Counted by: KJ

HORROCKS
E $N$ G $\quad$ I $\|_{n}^{N}$ E

City: Pleasant Grove
S Street: 1300 West Date: Tuesday, February 24, 2009 Begin Time: 07:00 AM Interval Length: $\mathbf{1 5} \mathbf{~ m i n}$

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:15 AM | 07:30 AM | 4 | 39 | 10 | 0 | 3 | 55 | 6 | 0 | 6 | 16 | 5 | 0 | 6 | 19 | 3 | 0 | 172 |  |
| 07:30 AM | 07:45 AM | 6 | 29 | 7 | 0 | 6 | 45 | 10 | 0 | 7 | 15 | 5 | 0 | 13 | 26 | 1 | 2 | 172 |  |
| 07:45 AM | 08:00 AM | 3 | 52 | 4 | 0 | 7 | 59 | 16 | 1 | 15 | 19 | 8 | 0 | 2 | 29 | 1 | 0 | 216 | 560 |
| 08:00 AM | 08:15 AM | 1 | 32 | 6 | 0 | 3 | 55 | 22 | 0 | 12 | 21 | 6 | 0 | 4 | 32 | 3 | 1 | 198 | 758 |
| 08:15 AM | 08:30 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 586 |
| 08:30 AM | 08:45 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 414 |
| 08:45 AM | 09:00 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 198 |



TRAFFIC COUNT SUMMARY
E-W Street: $\mathbf{2 6 0 0}$ North
Counted by: TY

HORROCKS E $\quad \mathrm{N}$ G $\quad$ I $\xrightarrow[N]{N}$ E 07:00 AM Interval Length: 15 min

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:15 AM | 07:30 AM | 0 | 0 | 0 | 0 | 0 | 38 | 1 | 0 | 0 | 0 | 9 | 0 | 10 | 17 | 0 | 0 | 75 |  |
| 07:30 AM | 07:45 AM | 0 | 0 | 0 | 0 | 0 | 60 | 3 | 0 | 3 | 0 | 13 | 0 | 15 | 17 | 0 | 0 | 111 |  |
| 07:45 AM | 08:00 AM | 0 | 0 | 0 | 0 | 0 | 65 | 5 | 0 | 2 | 0 | 22 | 0 | 29 | 19 | 0 | 0 | 142 | 328 |
| 08:00 AM | 08:15 AM | 0 | 0 | 0 | 0 | 0 | 41 | 8 | 0 | 4 | 0 | 24 | 0 | 30 | 17 | 0 | 0 | 124 | 452 |
| 08:15 AM | 08:30 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 377 |
| 08:30 AM | 08:45 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 266 |
| 08:45 AM | 09:00 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 124 |



E-W Street: Pleasant Grove Blvd
Counted by: MCM

HORROCKS


City: Pleasant Grove N-S Street: $\mathbf{2 2 0}$ South Date: Tuesday, March 03, 2009 Begin Time: 07:00 AM Interval Length: 15 min

| Time Interval |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:15 AM | 07:30 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:30 AM | 07:45 AM | 0 | 0 | 0 | 0 | 0 | 150 | 6 | 4 | 7 | 0 | 17 | 1 | 13 | 66 | 0 | 0 | 264 |  |
| 07:45 AM | 08:00 AM | 0 | 0 | 0 | 0 | 0 | 149 | 8 | 2 | 2 | 0 | 21 | 0 | 7 | 72 | 0 | 2 | 263 | 527 |
| 08:00 AM | 08:15 AM | 0 | 0 | 0 | 0 | 0 | 148 | 9 | 4 | 5 | 0 | 25 | 0 | 15 | 72 | 0 | 3 | 281 | 808 |
| 08:15 AM | 08:30 AM | 0 | 0 | 0 | 0 | 0 | 126 | 8 | 4 | 3 | 0 | 12 | 2 | 6 | 55 | 0 | 2 | 218 | 1026 |
| 08:30 AM | 08:45 AM | 0 | 0 | 0 | 0 | 0 | 145 | 7 | 5 | 6 | 0 | 18 | 0 | 21 | 65 | 0 | 6 | 273 | 1035 |
| 08:45 AM | 09:00 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 772 |



## TRAFFIC COUNT SUMMARY




## TRAFFIC COUNT SUMMARY

E-W Street: $\mathbf{2 6 0 0}$ North
Counted by: TY

HORROCKS


City: Pleasant Grove
N-S Street: $\mathbf{6 0 0}$ West Date: Thursday, February 19, 2009 Begin Time: 07:00 AM Interval Length: 15 min

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:15 AM | 07:30 AM | 0 | 0 | 0 | 0 | 0 | 27 | 2 | 0 | 0 | 0 | 3 | 0 | 5 | 28 | 0 | 0 | 65 |  |
| 07:30 AM | 07:45 AM | 0 | 0 | 0 | 0 | 0 | 42 | 0 | 0 | 1 | 0 | 3 | 0 | 8 | 26 | 0 | 0 | 80 |  |
| 07:45 AM | 08:00 AM | 0 | 0 | 0 | 0 | 0 | 51 | 6 | 0 | 2 | 0 | 8 | 0 | 12 | 33 | 0 | 0 | 112 | 257 |
| 08:00 AM | 08:15 AM | 0 | 0 | 0 | 0 | 0 | 31 | 1 | 0 | 0 | 0 | 4 | 0 | 13 | 32 | 0 | 0 | 81 | 338 |
| 08:15 AM | 08:30 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 273 |
| 08:30 AM | 08:45 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 193 |
| 08:45 AM | 09:00 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 81 |



## TRAFFIC COUNT SUMMARY




E-W Street: $\mathbf{2 0 0}$ South
Counted by: MCM

HORROCKS
E $N$ G I I ${ }^{N}$ E

City: Pleasant Grove
N-S Street: State Street
Date: Tuesday, February 24, 2009
Begin Time: 07:00 AM
Interval Length: 15 min

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:15 AM | 07:30 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:30 AM | 07:45 AM | 6 | 0 | 134 | 6 | 89 | 5 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 10 | 2 | 3 | 252 |  |
| 07:45 AM | 08:00 AM | 3 | 0 | 133 | 5 | 138 | 9 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 8 | 1 | 1 | 298 | 550 |
| 08:00 AM | 08:15 AM | 5 | 0 | 143 | 10 | 113 | 12 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 8 | 3 | 0 | 287 | 837 |
| 08:15 AM | 08:30 AM | 10 | 0 | 141 | 2 | 98 | 7 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 1 | 265 | 1102 |
| 08:30 AM | 08:45 AM | 11 | 0 | 98 | 4 | 94 | 14 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 5 | 7 | 1 | 233 | 1083 |
| 08:45 AM | 09:00 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 785 |



## TRAFFIC COUNT SUMMARY




## TRAFFIC COUNT SUMMARY

E-W Street: $\mathbf{2 0 0}$ South
Counted by: KJ

HORROCKS
E $N$ G I I

City: Pleasant Grove
N-S Street: Main Street
Date: Thursday, February 26, 2009 Begin Time: 07:00 AM Interval Length: $\mathbf{1 5} \mathbf{~ m i n}$

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly <br> Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:15 AM | 07:30 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:30 AM | 07:45 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:45 AM | 08:00 AM | 0 | 82 | 1 | 0 | 8 | 27 | 14 | 1 | 3 | 42 | 94 | 1 | 124 | 7 | 0 | 2 | 406 | 406 |
| 08:00 AM | 08:15 AM | 5 | 84 | 1 | 0 | 3 | 18 | 15 | 0 | 5 | 47 | 89 | 1 | 93 | 16 | 0 | 4 | 381 | 787 |
| 08:15 AM | 08:30 AM | 2 | 62 | 4 | 1 | 4 | 25 | 10 | 1 | 3 | 22 | 69 | 2 | 107 | 19 | 1 | 4 | 335 | 1122 |
| 08:30 AM | 08:45 AM | 0 | 60 | 4 | 0 | 7 | 23 | 18 | 0 | 10 | 40 | 79 | 5 | 104 |  | 3 | 1 | 358 | 1480 |
| 08:45 AM | 09:00 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | , | 1074 |



| OPTIONAL |  |
| :--- | ---: |
| Adjustment Factors |  |
| Monthly: | 1.00 |
| Daily: | 1.00 |
| Interval: | 1.00 |
| Count: | 1.00 |
| Total: | 1 |



## TRAFFIC COUNT SUMMARY




## TRAFFIC COUNT SUMMARY

E-W Street: Center
Counted by: KA

HORROCKS
E $\quad \mathrm{N}$ G I I $\|_{\|}$E

City: Pleasant Grove
N-S Street: 100 East
Date: Thursday, February 19, 2009 Begin Time: 07:00 AM Interval Length: 15 min

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | Total <br> All Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:15 AM | 07:30 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:30 AM | 07:45 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:45 AM | 08:00 AM | 41 | 152 | 10 | 0 | 4 | 56 | 3 | 0 | 1 | 67 | 11 | 0 | 7 | 22 | 22 | 0 | 396 | 396 |
| 08:00 AM | 08:15 AM | 47 | 144 | 11 | 0 |  | 57 | 2 | 0 | 0 | 66 | 11 | 0 | 9 | 24 | 17 | 0 | 392 | 788 |
| 08:15 AM | 08:30 AM | 36 | 125 | 8 | 0 | 2 | 44 | 2 | - | 1 | 54 | 10 | 0 | 7 | 22 | 18 | 0 | 329 | 1117 |
| 08:30 AM | 08:45 AM | 42 | 129 | 5 | 0 | 6 | 37 | 1 | - | 1 | 62 | 5 | 0 | 9 | 30 | 19 | 0 | 346 | 1463 |
| 08:45 AM | 09:00 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 1067 |



## TRAFFIC COUNT SUMMARY




## TRAFFIC COUNT SUMMARY

City: Pleasant Grove
N-S Street: $\mathbf{3 0 0}$ East
Date: Tuesday, February 24, 2009
Begin Time: 07:00 AM
Interval Length: 15 min

E-W Street: $\mathbf{1 1 0 0}$ North

Counted by: KA

HORROCKS
E N G I ${ }^{N}$ N E E R S

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:15 AM | 07:30 AM | 4 | 12 | 1 | 0 | 2 | 50 | 16 | 0 | 5 | 4 | 9 | 0 | 8 | 11 | 0 | 0 | 122 |  |
| 07:30 AM | 07:45 AM | 3 | 14 | 0 | 0 | 1 | 40 | 20 | 0 | 6 | 4 | 13 | 0 | 13 | 15 | 0 | 0 | 129 |  |
| 07:45 AM | 08:00 AM | 8 | 22 | 0 | 0 | 0 | 39 | 34 | 0 | 11 | 6 | 23 | 0 | 24 | 18 | 1 | 0 | 186 | 437 |
| 08:00 AM | 08:15 AM | 2 | 6 | 0 | 0 | 0 | 39 | 11 | 0 | 8 | 6 | 9 | 0 | 15 | 24 | 0 | 0 | 120 | 557 |
| 08:15 AM | 08:30 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 435 |
| 08:30 AM | 08:45 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 306 |
| 08:45 AM | 09:00 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 120 |



| OPTIONAL |  |
| :--- | ---: |
| Adjustment Factors |  |
| Montly: | 1.00 |
| Daily: | 1.00 |
| Interval: | 1.00 |
| Count: | 1.00 |
| Total: | 1 |


| ADJUSTED PEAK HOUR TRAFFIC VOLUMES |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Southbound |  |  | Westbound |  |  | Northbound |  |  | Eastbound |  |  |
| Left | Thru | Right |
| 1 | 54 | 17 | 81 | 168 | 3 | 54 | 20 | 30 | 1 | 68 | 60 |
| 72 |  |  | 252 |  |  | 104 |  |  | 129 |  |  |
| Trucks: |  | 0\% Trucks: |  |  | 0\% | Trucks: |  | 0\% | Trucks: |  | 0\% |
| Peak Hour: |  | 07:15 AM to 8:15 AM |  |  |  | Peak Vol: |  |  | PHF: |  |  |

## TRAFFIC COUNT SUMMARY




## TRAFFIC COUNT SUMMARY

E-W Street: $\mathbf{1 1 0 0}$ North
Counted by: TY

HORROCKS
E $N$ G I ${ }^{\prime}$

City: Pleasant Grove N-S Street: Murdock Drive Date: Wednesday, March 04, 2009 Begin Time: 07:00 AM Interval Length: 15 min

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | Total <br> All Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:15 AM | 07:30 AM | 1 | 0 | 0 | 0 | 0 | 30 | 0 | 0 | 0 | 0 | 8 | 0 | 1 | 7 | 0 | 0 | 47 |  |
| 07:30 AM | 07:45 AM | 6 | 1 | 0 | 0 | 1 | 42 | 0 | 0 | 0 | 0 | 11 | 0 | 2 | 6 | 2 | 0 | 71 |  |
| 07:45 AM | 08:00 AM | 4 | 0 | 1 | 0 | 0 | 47 | 0 | 0 | 0 | 1 | 10 | 0 | 3 | 17 | 2 | 0 | 85 | 203 |
| 08:00 AM | 08:15 AM | 3 | 1 | 1 | 0 | 1 | 33 | 0 | 0 | 0 | 0 | 5 | 0 | 5 | 22 | 2 | 0 | 73 | 276 |
| 08:15 AM | 08:30 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 229 |
| 08:30 AM | 08:45 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 158 |
| 08:45 AM | 09:00 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 73 |



| OPTIONAL |  |
| :--- | ---: |
| Adjustment Factors |  |
| Monthly: | 1.00 |
| Daily: | 1.00 |
| Interval: | 1.00 |
| Count: | 1.00 |
| Total: | 1 |



## TRAFFIC COUNT SUMMARY




TRAFFIC COUNT SUMMARY

City: Pleasant Grove
N-S Street: 1300 East
Date: Wednesday, February 25, 2009 Begin Time: 07:00 AM Interval Length: 15 min

HORROCKS
E $N$ G I ${ }^{\prime}$

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:15 AM | 07:30 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:30 AM | 07:45 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 07:45 AM | 08:00 AM | 6 | 7 | 1 | 0 | 3 | 8 | 0 | 2 | 0 | 1 | 4 | 0 | 1 | 3 | 0 | 0 | 36 | 36 |
| 08:00 AM | 08:15 AM | 1 | 6 | 0 | 1 | 1 | 5 | 2 | 0 | 1 | 4 | 8 | 0 | 4 | 4 | 2 | 1 | 39 | 75 |
| 08:15 AM | 08:30 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.1 |  | 0.1 | 75.1 |
| 08:30 AM | 08:45 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.2 |  | 0.2 | 75.3 |
| 08:45 AM | 09:00 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.3 |  | 0.3 | 39.6 |



## TRAFFIC COUNT SUMMARY




City: Pleasant Grove
N-S Street: State Street
Date: Tuesday, February 17, 2009
Begin Time: 07:00 AM
Interval Length: 15 min

E-W Street: $\mathbf{1 0 0}$ East

Counted by: KA

HORROCKS
E $N$ G I ${ }^{\|} \|$In

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM | 0 | 53 | 5 | 0 | 13 | 0 | 44 | 0 | 44 | 49 | 0 | 0 | 0 | 0 | 0 | 0 | 208 |  |
| 07:15 AM | 07:30 AM | 0 | 61 | 7 | 0 | 14 | 0 | 54 | 0 | 41 | 53 | 0 | 0 | 0 | 0 | 0 | 0 | 230 |  |
| 07:30 AM | 07:45 AM | 0 | 79 | 8 | 0 | 10 | 0 | 55 | 0 | 37 | 47 | 0 | 0 | 0 | 0 | 0 | 0 | 236 |  |
| 07:45 AM | 08:00 AM | 0 | 112 | 2 | 0 | 13 | 0 | 69 | 0 | 47 | 84 | 0 | 0 | 0 | 0 | 0 | 0 | 327 | 1001 |
| 08:00 AM | 08:15 AM | 0 | 94 | 9 | 0 | 12 | 0 | 89 | 0 | 36 | 71 | 0 | 0 | 0 | 0 | 0 | 0 | 311 | 1104 |
| 08:15 AM | 08:30 AM | 0 | 89 | 3 | 0 | 6 | 0 | 60 | 0 | 39 | 84 | 0 | 0 | 0 | 0 | 0 | 0 | 281 | 1155 |
| 08:30 AM | 08:45 AM | 0 | 102 | 6 | 0 | 8 | 0 | 58 | 0 | 44 | 87 | 0 | 0 | 0 | 0 | 0 | 0 | 305 | 1224 |
| 08:45 AM | 09:00 AM | 0 | 103 | 5 | 0 | 9 | 0 | 66 | 0 | 47 | 62 | 0 | 0 | 0 | 0 | - | 0 | 292 | 1189 |



| OPTIONAL |  |
| :--- | ---: |
| Adjustment Factors |  |
| Monthly: | 1.00 |
| Daily: | 1.00 |
| Interval: | 1.00 |
| Count: | 1.00 |
| Total: | 1 |


| ADJUSTED PEAK HOUR TRAFFIC VOLUMES |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Southbound |  |  | Westbound |  |  | Northbound |  |  | Eastbound |  |  |
| Left | Thru | Right |
| 20 | 397 | 0 | 276 | 0 | 39 | 0 | 326 | 166 | 0 | 0 | 0 |
| 417 |  |  | 315 |  |  | 492 |  |  | 0 |  |  |
| Trucks |  | 0\% | Trucks |  | 0\% | Trucks: |  | 0\% | Trucks: |  | 0\% |
| Peak H |  |  | AM | :45 AM |  | Peak Vol: |  | 1224 | PHF: |  | 0.94 |

## TRAFFIC COUNT SUMMARY




E-W Street: $\mathbf{2 6 0 0}$ North
Counted by: TY

HORROCKS
E $N$ G I I $\|_{N}^{N}$ E

City: Pleasant Grove
N-S Street: $\mathbf{1 0 0}$ East
Date: Tuesday, February 17, 2009
Begin Time: 07:00 AM Interval Length: 15 min

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 07:00 AM | 07:15 AM | 14 | 76 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 31 | 15 | 0 | 9 | 2 | 4 | 0 | 152 |  |
| 07:15 AM | 07:30 AM | 18 | 104 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 16 | 0 | 19 | 0 | 5 | 0 | 212 |  |
| 07:30 AM | 07:45 AM | 23 | 135 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 36 | 25 | 0 | 24 | 0 | 3 | - | 248 |  |
| 07:45 AM | 08:00 AM | 10 | 120 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 31 | 22 | 0 | 38 | 0 | 1 | 0 | 222 | 834 |
| 08:00 AM | 08:15 AM | 10 | 98 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 32 | 17 | 0 | 27 | 0 | 6 | 0 | 190 | 872 |
| 08:15 AM | 08:30 AM | 6 | 88 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 34 | 13 | 0 | 24 | 0 | 2 | 0 | 168 | 828 |
| 08:30 AM | 08:45 AM | 13 | 77 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 34 | 18 | 0 | 28 | 0 | 4 | 0 | 174 | 754 |
| 08:45 AM | 09:00 AM | 15 | 90 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 42 | 24 | 0 | 21 | 0 | 8 | 0 | 200 | 732 |



TRAFFIC COUNT SUMMARY


TRAFFIC COUNT SUMMARY
City: Pleasant Grove
N-S Street: SB Ramps
Date: Thursday, July 31, 2008
Begin Time: 04:00 PM

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 04:00 PM | 04:15 PM | 13 | 0 | 122 | 5 | 0 | 34 | 123 | 2 | 0 | 0 | 0 | 0 | 30 | 25 | 13 | 2 | 364 |  |
| 04:15 PM | 04:30 PM | 11 | 0 | 144 | 9 | 0 | 20 | 126 | 0 | 0 | 0 | 0 | 0 | 32 | 13 | 7 | 1 | 354 |  |
| 04:30 PM | 04:45 PM | 11 | 0 | 116 | 6 | 0 | 16 | 111 | 2 | 0 | 0 | 0 | 0 | 30 | 16 | 21 | 3 | 326 |  |
| 04:45 PM | 05:00 PM | 13 | 0 | 168 | 4 | 0 | 22 | 126 | 1 | 0 | 0 | 0 | 0 | 30 | 12 | 11 | 2 | 385 | 1429 |
| 05:00 PM | 05:15 PM | 12 | 1 | 136 | 8 | 0 | 22 | 154 | 1 | 0 | 0 | 0 | 0 | 57 | 20 | 35 | 2 | 440 | 1505 |
| 05:15 PM | 05:30 PM | 18 | 0 | 206 | 6 | 0 | 32 | 179 | 1 | 0 | 0 | 0 | 0 | 26 | 18 | 8 | 0 | 488 | 1639 |
| 05:30 PM | 05:45 PM | 13 | 2 | 167 | 4 | 0 | 15 | 136 | 1 | 0 | 0 | 0 | 0 | 32 | 17 | 15 | 3 | 401 | 1714 |
| 05:45 PM | 06:00 PM | 5 | 1 | 159 | 1 | 0 | 26 | 108 | 0 | 0 | 0 | 0 | 0 | 22 | 14 | 11 | 1 | 347 | 1676 |



TRAFFIC COUNT SUMMARY


# TRAFFIC COUNT SUMMARY 

| Pleasant Grove <br> 700 South | E-W Street: Pleasant Grove Blvd | HORROCKS |
| :---: | :---: | :---: |
| Thursday, August 07, 2008 | E-W Sreet. Pleasant Grove Bivd | E N G I N E E R S |
| 04:00 PM |  | E N G M E ER S |


| SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | $\begin{array}{\|c\|} \hline \text { Total } \\ \text { All Moves } \\ \hline \end{array}$ | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Right | Thru | Left | Trucks |  |  |
| 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 0 | 124 | 0 | 0 | 2 | 0 | 0 | 0 | 34 | 235 | 0 | 2 | 0 | 0 | 0 | 0 | 397 |  |
| 0 | 151 | 0 | 2 | 12 | 0 | 0 | 0 | 31 | 211 | 0 | 3 | 0 | 0 | 0 | 0 | 408 |  |
| 0 | 206 | 0 | 3 | 10 | 0 | 0 | 0 | 52 | 271 | 0 | 1 | 0 | 0 | 0 | 0 | 540 | 1345 |
| 0 | 169 | 0 | 2 | 5 | 0 | 0 | 0 | 30 | 256 | 0 | 3 | 0 | 0 | 0 | 0 | 463 | 1808 |
| 0 | 171 | 0 | 2 | 8 | 0 | 0 | 1 | 34 | 219 | 0 | 3 | 0 | 0 | 0 | 0 | 436 | 1847 |
| 1 | 161 | 0 | 2 | 7 | 0 | 0 | 0 | 33 | 266 | 0 | 2 | 0 | 0 | 0 | 0 | 470 | 1909 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 1369 |





TRAFFIC COUNT SUMMARY


| Time Interval |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 04:00 PM | 04:15 PM | 16 | 141 | 66 | 0 | 26 | 62 | 8 | 0 | 4 | 166 | 51 | 0 | 15 | 81 | 18 | 0 | 654 |  |
| 04:15 PM | 04:30 PM | 20 | 164 | 52 | 0 | 11 | 38 | 12 | 0 | 11 | 182 | 43 | 0 | 12 | 84 | 27 | 0 | 656 |  |
| 04:30 PM | 04:45 PM | 13 | 155 | 48 | 1 | 15 | 51 | 14 | 0 | 10 | 164 | 45 | 0 | 17 | 73 | 20 | 0 | 625 |  |
| 04:45 PM | 05:00 PM | 13 | 158 | 53 | 0 | 35 | 89 | 9 | 0 | 10 | 190 | 51 | 0 | 14 | 136 | 29 | 0 | 787 | 2722 |
| 05:00 PM | 05:15 PM | 16 | 180 | 69 | 0 | 9 | 69 | 16 | 0 | 22 | 234 | 59 | 0 | 19 | 112 | 29 | 0 | 834 | 2902 |
| 05:15 PM | 05:30 PM | 11 | 148 | 70 | 0 | 27 | 79 | 8 | 0 | 14 | 198 | 50 | 0 | 13 | 111 | 21 | 0 | 750 | 2996 |
| 05:30 PM | 05:45 PM | 15 | 163 | 62 | 0 | 30 | 93 | 9 | 0 | 7 | 204 | 56 | 0 | 13 | 118 | 23 | 0 | 793 | 3164 |
| 05:45 PM | 06:00 PM | 13 | 195 | 69 | 0 | 30 | 62 | 9 | 0 | 3 | 202 | 63 | 0 | 22 | 86 | 24 | 1 | 779 | 3156 |



City: Pleasant Grove
N-S Street: State Stree
Date: Monday, August 11, 2008
Begin Time: 04:00 PM
Begin Time: 04:00 PM
Interval Length: $\quad 15 \mathrm{~min}$

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | - | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 04:00 PM | 04:15 PM | 37 | 133 | 3 | 3 | 3 | 46 | 32 | 4 | 33 | 101 | 11 | 1 | 0 | 75 | 59 | 1 | 539 |  |
| 04:15 PM | 04:30 PM | 45 | 124 | 0 | 2 | 3 | 47 | 47 | 2 | 26 | 132 | 13 | 0 | 0 | 41 | 59 | 4 | 543 |  |
| 04:30 PM | 04:45 PM | 37 | 134 | 0 | 1 | 6 | 40 | 29 | 1 | 31 | 125 | 12 | 3 | 0 | 57 | 76 | 1 | 552 |  |
| 04:45 PM | 05:00 PM | 36 | 139 | 2 | 3 | 1 | 49 | 42 | 0 | 36 | 117 | 13 | 2 | 0 | 58 | 72 | 3 | 570 | 2204 |
| 05:00 PM | 05:15 PM | 55 | 142 | 5 | 4 | 1 | 47 | 42 | 4 | 38 | 124 | 12 | 0 | 0 | 82 | 94 | 1 | 647 | 2312 |
| 05:15 PM | 05:30 PM | 46 | 149 | 8 | 1 | 2 | 75 | 45 | 3 | 42 | 166 | 13 | 1 | 4 | 94 | 105 | 0 | 753 | 2522 |
| 05:30 PM | 05:45 PM | 32 | 127 | 3 | 0 | 6 | 54 | 48 | 1 | 28 | 116 | 13 | 0 | 1 | 85 | 98 | 0 | 612 | 2582 |
| 05:45 PM | 06:00 PM | 33 | 141 | 0 | 0 | 0 | 47 | 29 | 0 | 36 | 149 | 7 | 1 | 0 | 49 | 86 | 3 | 581 | 2593 |



| OPTIONAL <br> Adjustment |  |
| :--- | ---: |
| Mactorsthly: | 1.00 |
| Daily: | 1.00 |
| Interval: | 1.00 |
| Count: | 1.00 |
| Total: | 1 |


| ADJUSTED PEAK HOUR TRAFFIC VOLUMES |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Southbound |  |  | Westbound |  |  | Northbound |  |  | Eastbound |  |  |
| Left | Thru | Right |
| 16 | 559 | 166 | 16 | 223 | 9 | 45 | 555 | 144 | 383 | 310 | 5 |
| 741 |  |  | 396 |  |  | 744 |  |  | 698 |  |  |
| ruck |  | 1\% | Trucks: |  | 2\% | Trucks: |  | 0\% | Trucks: |  | 1\% |
| ak |  |  | PM | :00 PM |  | ak Vo |  | 2579 | PHF: |  | 0.86 |



## HORROCKS <br> E N G I N E E R S

 Dreet: State StreeDate: Tuesday, Date: Tuesday,
gin Time: $04: 45$ PM

| Time Interval |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | $\begin{aligned} & 15 \mathrm{Min} \\ & \text { Totals } \end{aligned}$ | $\begin{array}{l}\text { Hourly } \\ \text { Totals }\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Trucks | Right | Thru | Left |  |  |  |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | , | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |  |  |  |
| 04:45 PM | 04:50 PM | 0 | 3 | 65 | 2 |  |  |  |  |  |  |  |  | 0 | 7 | 25 | 9 | 111 |  |  |
| 04:50 PM | 04:55 PM | 0 | 4 | 64 | 3 | 0 | 4 | 10 | 24 | 1 | 17 | 121 | 8 | 0 | 5 | 23 | 9 | 291.5 |  |  |
| 04:55 PM | 05:00 PM | 0 | 5 | 63 | 4 | 0 | 3 | 15 | 28 | 1 | 16 | 102 | 7 | 0 | 3 | 21 |  | 274 | 676.5 |  |
| 05:00 PM | 05:05 PM | 2 | 5 | 74 | 4 | 0 | 2 | 20 | 31 | 1 | 14 | 83 | 6 | 1 | 6 | 20 | 7 | 270 |  |  |
| 05:05 PM | 05:10 PM | 3 | 5 | 84 | 3 | 0 | 2 | 14 | 27 | 1 | 20 | 107 | 8 | 1 | 8 | 18 | ${ }^{7}$ | 301 |  |  |
| 05:10 PM | 05:15 PM | 2 | 6 | 76 | 2 | 0 | 1 | 8 | 22 | 1 | 26 | 131 | 10 | 1 | 7 | 18 | 10 | 316 | 887 |  |
| 05:15 PM | 05:20 PM | 0 | 7 | 68 | 0 | 1 | 2 | 13 | 23 | 1 | 25 | 123 | 9 | 1 | 5 | 18 | 14 | 306 |  |  |
| 05:20 PM | 05:25 PM | 1 | 6 | 76 | 2 | 1 | 2 | 18 | 24 | 0 | 24 | 114 | 8 | 1 | 5 | 23 | 11 | 310.5 |  |  |
| 05:25 PM | 05:30 PM | 1 | 5 | 83 | 3 | 1 | 2 | 17 | 26 | 0 | 26 | 131 | 9 | 0 | 4 | 27 | 7 | 339 | 955.5 |  |
| 05:30 PM | 05:35 PM | 1 | 6 | 79 | 2 | 0 | 1 | 15 | 28 | 0 | 28 | 148 | 10 | 0 | 7 | 23 | 10 | 355.5 |  |  |
| 05:35 PM | 05:40 PM | 0 | 6 | 75 | 1 | 0 | 1 | 11 | 26 | 0 | 24 | 125 | 10 | 0 | 9 | 18 | 13 | 318 |  |  |
| 05:40 PM | 05:45 PM | - | 5 | 86 | 1 | 0 | 0 | 7 | 23 | 0 | 20 | 102 | 10 | 1 | 8 | 20 | 10 | 290.5 | 964 | 3483 |
| 05:45 PM | 05:50 PM | 0 | 4 | 97 | 1 | 0 | 1 | 8 | 23 | 1 | 22 | 116 | 12 | 1 | 6 | 21 | 6 | 315.5 |  |  |
| 05:50 PM | 05:55 PM | 0 | 4 | 80 | 0.5 |  | 2 | 9 | 22 | 1 | 23 | 130 | 13 | 1 | 5 | 25 | 8 | 321.5 |  |  |
| 05:55 PM | 06:00 PM | 0 | 4 | 63 | 0 | 0 | 1 | 8 | 22 | 1 | 22 | 116 | 12 | 0 | 4 | 29 | 10 | 291 | 928 | 3734.5 |
| 06:00 PM | 06:05 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |  |
| 06:05 PM | 06:10 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |  |
| 06:10 PM | 06:15 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 0 | 2847.5 |
| 06:15 PM | 06:20 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |  |
| 06:20 PM | 06:25 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |  |
| 06:25 PM | 06:30 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 0 | 1892 |
| 06:30 PM | 06:35 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |  |
| 06:35 PM | 06:40 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |  |
| 06:40 PM | 06:45 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 0 | 928 |


State Street_700 South_10-16.xis


# TRAFFIC COUNT SUMMARY 

E-W Street: $\mathbf{1 8 0 0}$ North
Counted by: KJ

HORROCKS
E N G I N E E R S

Begin Time: 04:00 PM

| WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Right | Thru | Left | Trucks | Right | Thru | Left | Trucks | Right | Thru | Left | Trucks |  |  |
| 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
|  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
|  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
|  |  |  |  |  |  |  |  |  |  |  |  | 0 | 0 |
| 1 | 13 | 6 | 0 | 6 | 44 | 3 | 0 | 5 | 19 | 8 | 0 | 138 | 138 |
| 2 | 12 | 6 | 0 | 2 | 43 | 4 | 0 | 8 | 26 | 8 | 0 | 137 | 275 |
| 5 | 15 | 6 | 0 | 5 | 53 | 9 | 0 | 4 | 24 | 5 | 0 | 155 | 430 |
| 2 | 16 | 1 | 0 | 8 | 42 | 10 | 0 | 3 | 18 | 10 | 0 | 145 | 575 |



1800 N \& 1300 W PM.x|s
MCM 6/15/2009


$1800 \mathrm{~N} \& 600 \mathrm{~W}$ PM.x|s


TRAFFIC COUNT SUMMARY



City: Pleasant Grove
N-S Street: $\mathbf{3 0 0}$ East
Date: Wednesday, February 18, 2009
Begin Time: 04:00 PM
Begin Time: 04:00 PM
interval Length: $\quad 15 \mathrm{~min}$

E-W Street: Center Street

Counted by: KA

HORROCKS
E N G I N E E R S

| Time Interval |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 04:00 PM | 04:15 PM | 8 | 31 | 0 | 0 | 0 | 20 | 2 | 0 | 7 | 28 | 5 | 0 | 10 | 30 | 10 | 0 | 151 |  |
| 04:15 PM | 04:30 PM | 5 | 27 | 4 | 0 | 0 | 33 |  | 0 | 3 | 35 | 6 | 0 | 18 | 29 | 5 | 0 | 171 |  |
| 04:30 PM | 04:45 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.1 |  | 0.1 |  |
| 04:45 PM | 05:00 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.2 |  | 0.2 | 322.3 |
| 05:00 PM | 05:15 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.3 |  | 0.3 | 171.6 |
| 05:15 PM | 05:30 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 0.6 |
| 05:30 PM | 05:45 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 0.5 |
| 05:45 PM | 06:00 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 0.3 |



| OPTIONAL |  |
| :--- | ---: |
| Adjustment Factors |  |
| Monthly: | 1.00 |
| Daily: | 1.00 |
| Interval: | 1.00 |
| Count: | 2.35 |
| Total: | 2.35 |



Center St \& 300 E PM. xls
MCM 6/15/2009

TRAFFIC COUNT SUMMARY
E-W Street: 200 South
Counted by: KA

HORROCKS
E N G I $\|_{N}^{N}$ E E R S Begin Time: 04:00 PM

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 04:00 PM | 04:15 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 04:15 PM | 04:30 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 04:30 PM | 04:45 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.1 |  | 0.1 |  |
| 04:45 PM | 05:00 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.2 |  | 0.2 | 0.3 |
| 05:00 PM | 05:15 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.3 |  | 0.3 | 0.6 |
| 05:15 PM | 05:30 PM | 0 | 1 | 0 | 0 | 0 | 53 | 10 | 0 | 19 | 0 | 20 | 0 | 42 | 91 | 0 | 0 | 236 | 236.6 |
| 05:30 PM | 05:45 PM | 0 | 0 | 0 | 0 | 0 | 49 | 11 | 0 | 19 | 0 | 25 | 0 | 24 | 94 | 0 | 0 | 222 | 458.5 |
| 05:45 PM | 06:00 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 458.3 |




| OPTIONAL |  |
| :--- | ---: |
| Adjustment Factors |  |
| Monthly: | 1.00 |
| Daily: | 1.00 |
| Interval: | 1.00 |
| Count: | 2.34 |
| Total: | 2.34 |


$700 \mathrm{E} \& 500 \mathrm{~N}$ PM.x|s
MCM 6/15/2009

TRAFFIC COUNT SUMMARY
E-W Street: Center Street
Counted by: KA

HORROCKS
E N G I $\|$ In E E R S Begin Time: 04:00 PM Interval Length: 15 min

|  |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  |  | Hourly <br> Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 04:00 PM | 04:15 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 04:15 PM | 04:30 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 04:30 PM | 04:45 PM | 5 | 5 | 2 | 0 | 2 | 14 | 4 | 0 | 10 | 20 | 1 | 0 | 4 | 28 | 5 | 0 | 100 |  |
| 04:45 PM | 05:00 PM | 5 | 12 | 2 | 0 | 0 | 13 | 9 | 0 | 10 | 17 | 3 | 0 | 0 | 22 | 3 | 0 | 96 | 196 |
| 05:00 PM | 05:15 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.1 |  | 0.1 | 196.1 |
| 05:15 PM | 05:30 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.2 |  | 0.2 | 196.3 |
| 05:30 PM | 05:45 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.3 |  | 0.3 | $96.6$ |
| 05:45 PM | 06:00 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |





City: Pleasant Grove
N-S Street: 1300 West
Date: Wednesday, February 25, 2009
Begin Time: 04:00 PM

E-W Street: $\mathbf{2 6 0 0}$ North
Counted by: TY

HORROCKS
E $N$ G G I $\begin{array}{llllll} & N & E & E & R & S\end{array}$

| Time Interval |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 04:00 PM | 04:15 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 04:15 PM | 04:30 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 04:30 PM | 04:45 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 04:45 PM | 05:00 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 0 |
| 05:00 PM | 05:15 PM | 0 | 0 | 0 | 0 | 0 | 47 | 4 | 0 | 8 | 0 | 15 | 0 | 12 | 42 | 0 | 0 | 128 | 128 |
| 05:15 PM | 05:30 PM | 0 | 0 | 0 | 0 | 0 | 43 | 3 | 0 | 5 | 0 | 22 | 0 | 15 | 55 | 0 | 0 | 143 | 271 |
| 05:30 PM | 05:45 PM | 0 | 0 | 0 | 0 | 0 | 35 | 2 | 0 | 7 | 0 | 23 | 0 | 16 | 40 | 0 | 0 | 123 | 394 |
| 05:45 PM | 06:00 PM | 0 | 0 | 0 | 0 | - | 44 | 1 | 0 | 4 | 0 | 20 | 0 | 18 | 36 | 0 | - | 123 | 517 |



| OPTIONAL <br> Adjustment Factors |  |
| :--- | ---: |
| Monthly: | 1.00 |
| Daily: | 1.00 |
| Interval: | 1.00 |
| Count: | 1.00 |
| Total: | 1 |


| ADJUSTED PEAK HOUR TRAFFIC VOLUMES |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Southbound |  |  | Westbound |  |  | Northbound |  |  | Eastbound |  |  |
| Left | Thru | Right |
| 0 | 0 | 0 | 10 | 169 | 0 | 80 | 0 | 24 | 0 | 173 | 61 |
| 0 |  |  | 179 |  |  | 104 |  |  | 234 |  |  |
| Trucks: |  | 0\% Trucks:05:00 PM to 6:00 PM |  |  | 0\% | Trucks: |  | 0\% | Trucks: |  | 0\% |
| Peak |  |  |  |  | Peak Vol: | 517 | PHF: |  | 0.90 |

2600 N \& 1300 W PM.x|s
MCM 6/15/2009


## TRAFFIC COUNT SUMMARY

E-W Street: $\mathbf{2 6 0 0}$ North
Counted by: TY

HORROCKS
E N G I N E E R S

Begin Time: 04:00 PM

| Time Interval |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | Total <br> All Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 04:00 PM | 04:15 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 04:15 PM | 04:30 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 04:30 PM | 04:45 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 04:45 PM | 05:00 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 0 |
| 05:00 PM | 05:15 PM | 9 | 0 | 9 | 0 | 17 | 26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 32 | 17 | 0 | 110 | 110 |
| 05:15 PM | 05:30 PM | 6 | 0 | 8 | 0 | 11 | 29 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 41 | 11 | 0 | 106 | 216 |
| 05:30 PM | 05:45 PM | 9 | 0 | 10 | 0 | 17 | 28 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 37 | 13 | 0 | 114 | 330 |
| 05:45 PM | 06:00 PM | 2 | 0 | 6 | 0 | 12 | 33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 32 | 11 | 0 | 96 | 426 |



| OPTIONAL <br> Adjustment Factors |  |
| :--- | ---: |
| Monthly: | 1.00 |
| Daily: | 1.00 |
| Interval: | 1.00 |
| Count: | 1.00 |
| Total: | 1 |



2600 N \& 900 W PM.x|s
MCM 6/15/2009







E-W Street: Center Street
Counted by: KJ

HORROCKS
E N G I N E E R S

Begin Time: 04:00 PM

| Time Interval |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 04:00 PM | 04:15 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 04:15 PM | 04:30 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 04:30 PM | 04:45 PM | 0 | 6 | 1 | 0 | 0 | 72 | 20 | 0 | 12 | 3 | 62 | 0 | 27 | 87 | 0 | 0 | 290 |  |
| 04:45 PM | 05:00 PM | 5 | 4 | 2 | 0 | 1 | 75 | 16 | 0 | 19 | 3 | 78 | 0 | 39 | 96 | 3 | 0 | 341 | 631 |
| 05:00 PM | 05:15 PM | 1 | 9 | 3 | 0 | 1 | 71 | 16 | 0 | 20 | 10 | 52 | 0 | 52 | 88 | 1 | 0 | 324 | 955 |
| 05:15 PM | 05:30 PM | 1 | 9 | 1 | 0 | 2 | 64 | 24 | 0 | 18 | 3 | 74 | 0 | 34 | 97 | 2 | 0 | 329 | 1284 |
| 05:30 PM | 05:45 PM | 1 | 5 | 0 | 0 | 1 | 68 | 20 | 0 | 18 | 2 | 69 | 0 | 39 | 84 | 3 | 0 | 310 | 1304 |
| 05:45 PM | 06:00 PM | 1 | 7 | 0 | 0 | 0 | 60 | 10 | 0 | 24 | 3 | 87 | 0 | 31 | 97 | 2 | 0 | 322 | 1285 |



| OPTIONAL <br> Adjustment Factors |  |
| :--- | ---: |
| Monthly: | 1.00 |
| Daily: | 1.00 |
| Interval: | 1.00 |
| Count: | 1.00 |
| Total: | 1 |



Center St \& Main St PM.xls
MCM 6/15/2009





## TRAFFIC COUNT SUMMARY

E-W Street: $\mathbf{1 1 0 0}$ North
Counted by: ZE

HORROCKS
E N G I N E E R S

Begin Time: 04:00 PM

| Time Interval |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Right | Thru | Left | Trucks |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
| 04:00 PM | 04:15 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 04:15 PM | 04:30 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 04:30 PM | 04:45 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 04:45 PM | 05:00 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 0 |
| 05:00 PM | 05:15 PM | 0 | 3 | 0 | 0 | 0 | 24 | 0 | 0 | 3 |  | 8 | 0 | 11 | 49 |  | 0 | 103 | 103 |
| 05:15 PM | 05:30 PM | 4 | 1 | 1 | 0 | 0 | 22 | 3 | 0 | 2 | 3 | 4 | 0 | 10 | 49 | 1 | 0 | 100 | 203 |
| 05:30 PM | 05:45 PM | 2 | 5 | 0 | 0 | 0 | 18 | 0 | 0 | 2 | 6 | 3 | 0 |  | 53 |  | 0 | 100 | 303 |
| 05:45 PM | 06:00 PM | 1 | 1 | 0 | 0 | 1 | 39 | 0 | 0 | 1 | 2 | 5 | 0 | 1 | 42 | 1 | 0 | 94 | 397 |






| OPTIONAL |  |
| :--- | ---: |
| Adjustment Factors |  |
| Monthly: | 1.00 |
| Daily: | 1.00 |
| Interval: | 1.00 |
| Count: | 2.06 |
| Total: | 2.06 |



200 S \& Murdock PM.xls
MCM 6/15/2009


# TRAFFIC COUNT SUMMARY 

E-W Street: Murdock Drive
Counted by: MCM

HORROCKS
E N G I N E E R S

Begin Time: 04:00 PM
Interval Length: 15 min

| WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Right | Thru | Left | Trucks | Right | Thru | Left | Trucks | Right | Thru | Left | Trucks |  |  |
| 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |
| 0 | 2 | 6 | 0 | 10 | 22 | 9 | 0 | 11 | 3 | 0 | 0 | 75 |  |
| 0 | 5 | 3 | 0 | 13 | 22 | 12 | 0 | 15 | 4 | 0 | 0 | 85 | 160 |
|  |  |  |  |  |  |  |  |  | 0.1 |  |  | 0.1 | 160.1 |
|  |  |  |  |  |  |  |  |  | 0.2 |  |  | 0.2 | 160.3 |
|  |  |  |  |  |  |  |  |  | 0.3 |  |  | 0.3 | 85.6 |
|  |  |  |  |  |  |  |  |  |  |  |  | 0 | 0.6 |



| OPTIONAL |  |
| :--- | ---: |
| Adjustment Factors |  |
| Monthly: | 1.00 |
| Daily: | 1.00 |
| Interval: | 1.00 |
| Count: | 2.34 |
| Total: | 2.34 |


| ADJUSTED PEAK HOUR TRAFFIC VOLUMES |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Southbound |  |  | Westbound |  |  | Northbound |  |  | Eastbound |  |  |
| Left | Thru | Right |
| 2 | 47 | 5 | 21 | 16 | 0 | 49 | 103 | 54 | 0 | 17 | 61 |
| 54 |  |  | 37 |  |  | 206 |  |  | 78 |  |  |
| Trucks: |  | 0\%\|Trucks: |  |  | 0\% | Trucks: |  | 0\% | Trucks: |  | 0\% |
| Peak |  |  |  |  | Peak Vol: | 375 | PHF: |  | 0.47 |

## TRAFFIC COUNT SUMMARY

City: Pleasant Grove
N-S Street: State Street
Date: Tuesday, February 17, 2009
Begin Time: 07:00 AM

E-W Street: $\mathbf{1 0 0}$ East
Counted by: KA

## HORROCKS

E N G I $N$ N E E R S

| Time Interval |  | SB |  |  |  | WB |  |  |  | NB |  |  |  | EB |  |  |  | TotalAll Moves | Hourly Totals | 0.5 Hr . Factor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Right | Thru | Left | Trucks |  |  |  |
|  |  | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 9 | 14 | 15 | 16 | 13 |  |  |  |
| 07:00 AM | 07:15 AM | 0 | 53 | 5 | 0 | 13 | 0 | 44 | 0 | 44 | 49 | 0 | 0 | 0 | 0 | 0 | 0 | 208 |  |  |
| 07:15 AM | 07:30 AM | 0 | 61 | 7 | 0 | 14 | 0 | 54 | 0 | 41 | 53 | 0 | 0 | 0 | 0 | 0 | 0 | 230 |  | 2.794521 |
| 07:30 AM | 07:45 AM | 0 | 79 | 8 | 0 | 10 | 0 | 55 | 0 | 37 | 47 | 0 | 0 | 0 | 0 | 0 | 0 | 236 |  | 2.626609 |
| 07:45 AM | 08:00 AM | 0 | 112 | 2 | 0 | 13 | 0 | 69 | 0 | 47 | 84 | 0 | 0 | 0 | 0 | 0 | 0 | 327 | 1001 | 2.174067 |
| 08:00 AM | 08:15 AM | 0 | 94 | 9 | 0 | 12 | 0 | 89 | 0 | 36 | 71 | 0 | 0 | 0 | 0 | 0 | 0 | 311 | 1104 | 1.918495 |
| 08:15 AM | 08:30 AM | 0 | 89 | 3 | 0 | 6 | 0 | 60 | 0 | 39 | 84 | 0 | 0 | 0 | 0 | 0 | 0 | 281 | 1155 | 2.067568 |
| 08:30 AM | 08:45 AM | 0 | 102 | 6 | 0 | 8 | 0 | 58 | 0 | 44 | 87 | 0 | 0 | 0 | 0 | 0 | 0 | 305 | 1224 | 2.088737 |
| 08:45 AM | 09:00 AM | 0 | 103 | 5 | 0 | 9 | 0 | 66 | 0 | 47 | 62 | 0 | 0 | 0 | 0 | 0 | 0 | 292 | 1189 | 2.050251 |



TRAFFIC COUNT SUMMARY

$1100 \mathrm{~N} \& 100$ E PM.x|s



## Appendix B: Existing (2009) Synchro Model Output



## SR-89 5/14/2007 2008 Existing Condition <br> 6/15/200

HCM Signalized Intersection Capacity Analysis


## SR-89 5/14/2007 2008 Existing Conditions

6/15/2009


Critical Lane Group

HCM Signalized Intersection Capacity Analysis
12：SR－89 \＆Geneva Road
Timing Plan：AM Peak

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | \％ | 个虫 |  | \％ | ¢4¢ | F | 7 | $\uparrow$ | F | 7 | $\uparrow \uparrow$ | 「 |
| Volume（vph） | 2 | 415 | 260 | 45 | 317 | 57 | 147 | 123 | 26 | 121 | 339 | 19 |
| Ideal Flow（vphpl） | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Total Lost time（s） | 6.0 | 6.0 |  | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 |
| Lane Util．Factor | 1.00 | 0.91 |  | 1.00 | 0.91 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 |
| Fit | 1.00 | 0.94 |  | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 |
| Flt Protected | 0.95 | 1.00 |  | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 |
| Satd．Flow（prot） | 1770 | 4791 |  | 1770 | 5085 | 1583 | 1770 | 1863 | 1583 | 1770 | 3539 | 1583 |
| Flt Permitted | 0.54 | 1.00 |  | 0.36 | 1.00 | 1.00 | 0.43 | 1.00 | 1.00 | 0.63 | 1.00 | 1.00 |
| Satd．Flow（perm） | 1000 | 4791 |  | 667 | 5085 | 1583 | 792 | 1863 | 1583 | 1177 | 3539 | 1583 |
| Peak－hour factor，PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Adj．Flow（vph） | 2 | 451 | 283 | 49 | 345 | 62 | 160 | 134 | 28 | 132 | 368 | 21 |
| RTOR Reduction（vph） | 0 | 49 | 0 | 0 | 0 | 20 | 0 | 0 | 22 | 0 | 0 | 16 |
| Lane Group Flow（vph） | 2 | 685 | 0 | 49 | 345 | 42 | 160 | 134 | 6 | 132 | 368 | 5 |
| Turn Type | Perm |  |  | Perm |  | Perm | Perm |  | Perm | Perm |  | Perm |
| Protected Phases |  | 4 |  |  | 8 |  |  | 2 |  |  | 6 |  |


| Permitted Phases | 4 |  | 8 | 8 | 2 |  | 2 | 6 |  | 6 |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Actuated Green，G（s） | 81.7 | 81.7 | 81.7 | 81.7 | 81.7 | 26.3 | 26.3 | 26.3 | 26.3 | 26.3 | 26.3 | $\begin{array}{llllllllllll}\text { Effective Green，} g(s) & 81.7 & 81.7 & 81.7 & 81.7 & 81.7 & 26.3 & 26.3 & 26.3 & 26.3 & 26.3 & 26.3\end{array}$ $\begin{array}{llllllllllll}\text { Actuated } g / C \text { Ratio } & 0.68 & 0.68 & 0.68 & 0.68 & 0.68 & 0.22 & 0.22 & 0.22 & 0.22 & 0.22 & 0.22 \\ \text { Clearance Time（s）} & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 \\ \text { Vehide Extension（s）} & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0\end{array}$ | Vehicle Extension（s） | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Lane Grp Cap（vph） | 681 | 3262 | 454 | 3462 | 1078 | 174 | 408 | 347 | 258 | 776 | 347 | v／s Ratio Perm v／c Ratio Uniform Delay，d1


|  | 0.00 | 0.21 | 0.11 | 0.10 | 0.04 | 0.92 | 0.33 | 0.02 | 0.51 | 0.47 | 0.01 |
| :--- | ---: | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 6.1 | 7.1 | 6.6 | 6.6 | 6.3 | 45.8 | 39.4 | 36.7 | 41.2 | 40.8 | 36.7 |
| Progression Factor | 0.47 | 0.44 | 0.68 | 0.73 | 0.21 | 1.00 | 1.00 | 1.00 | 1.00 |  |  |


|  | 0.47 | 0.44 | 0.68 | 0.73 | 0.21 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Progression Factor | 0.44 | 0.5 | 0.1 | 0.1 | 45.1 | 0.5 | 0.0 | 17 | 0 |  |  |
| Incremental Delay，d2 | 0.0 | 0.1 | 0.3 |  |  |  |  |  |  |  |  | elay（s） Level of Service Approach LOS


| Intersection Summary |  |  |  |
| :--- | ---: | :--- | ---: |
| HCM Average Control Delay | 23.1 | HCM Level of Service | C |
| HCM Volume to Capacity ratio | 0.38 | Sum of lost time（s） | 12.0 |
| Actuated CCcle Lenght（s） | 120.0 | A |  |
| Intersection Capacity Utilization | $54.7 \%$ | ICU Level of Service |  |
| Analysis Period（min） | 15 |  |  |

Analysis Period（min）
c Critical Lane Group

## SR－89 5／14／2007 2008 Existing Conditions

6／15／2009


Critical Lane Group

HCM Signalized Intersection Capacity Analysis 15： 700 North \＆SR－89

Timing Plan：AM Peak

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | ＊ | $\uparrow$ | F | ＊ | $\uparrow$ | F | ＊ | ヶヶヶ¢ | 「 | \％ | ヶヶ¢ |  |
| Volume（vph） | 48 | 85 | 134 | 52 | 200 | 38 | 151 | 524 | 43 | 32 | 876 |  |
| Ideal Flow（yphpl） | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 190 |
| Total Lost time（s） | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6. |
| Lane Util．Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.91 | 1.00 | 1.00 | 0.91 | 1.0 |
| Fit | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.8 |
| Flt Protected | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.0 |
| Satd．Flow（prot） | 1770 | 1863 | 1583 | 1770 | 1863 | 1583 | 1770 | 5085 | 1583 | 1770 | 5085 | 158 |
| Flt Permitted | 0.37 | 1.00 | 1.00 | 0.70 | 1.00 | 1.00 | 0.28 | 1.00 | 1.00 | 0.43 | 1.00 | 1.0 |
| Satd．Flow（perm） | 694 | 1863 | 1583 | 1299 | 1863 | 1583 | 528 | 5085 | 1583 | 796 | 5085 | 15 |
| Peak－hour factor，PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.9 |
| Adj．Flow（vph） | 52 | 92 | 146 | 57 | 217 | 41 | 164 | 570 | 47 | 35 | 952 |  |
| RTOR Reduction（vph） | 0 | 0 | 122 | 0 | 0 | 18 | 0 | 0 | 12 | 0 | 0 |  |
| Lane Group Flow（vph） | 52 | 92 | 24 | 57 | 217 | 23 | 164 | 570 | 35 | 35 | 952 |  |
| Turn Type | Perm |  | Perm | Perm |  | Perm | Perm |  | Perm | Perm |  | Pe！ |
| Protected Phases |  | 4 |  |  | 8 |  |  | 2 |  |  | 6 |  |
| Permitted Phases | 4 |  | 4 | 8 |  | 8 | 2 |  | 2 | 6 |  |  | | Permitted Phases | 4 |  | 4 | 8 |  | 8 | 2 |  | 2 | 6 |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Actuated Green，G（s） | 19.4 | 19.4 | 19.4 | 19.4 | 19.4 | 19.4 | 88.6 | 88.6 | 88.6 | 88.6 | 88.6 | $\begin{array}{lllllllllllll}\text { Effective Green，} g(s) & 19.4 & 19.4 & 19.4 & 19.4 & 19.4 & 19.4 & 88.6 & 88.6 & 88.6 & 88.6 & 88.6 & 88.6\end{array}$ $\begin{array}{lrrrrrrrrrrrr}\text { Actuated } g / C \text { Ratio } & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 & 0.74 & 0.74 & 0.74 & 0.74 & 0.74 & 0.74 \\ \text { Clearance Time（s）} & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0\end{array}$


| Vehicle Extension（s） | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Lane Grp Cap（vph） | 112 | 301 | 256 | 210 | 301 | 256 | 390 | 3754 | 1169 | 588 | 3754 | 1169 | v／s Ratio Perm V／c Ratio

0.07


| Uniform Delay，d1 | 45.6 | 44.4 | 42.8 | 44.1 | 47.7 | 42.8 | 6.0 | 4.6 | 4.2 | 4.3 | 5.1 | 4.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Progression Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 0.4 |  |


| Incremental Delay，d2 | 3.0 | 0.6 | 0.2 | 0.7 | 8.2 | 0.1 | 3.3 | 0.1 | 0.0 | 0.2 | 0.2 | 0.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | evel of Service

Approach Delay（s） Approach LOS

| Intersection Summary |  |  |  |
| :--- | ---: | :--- | ---: |
| HCM Average Control Delay | 14.9 | HCM Level of Service | B |
| HCM Volume to Capacity ratio | 0.47 | Sum of lost time（s） | 12.0 |
| Actuated CCcle Length（s） | 120.0 | ICU evt of Sevice | B |
| Intersection Capacity Utilization | $59.2 \%$ | ICU Level o Servic |  |

Analysis Period（min）
c Critical Lane Group


Cnalysitical Lane Group

HCM Signalized Intersection Capacity Analysis


## SR-89 5/14/2007 2008 Existing Conditions

6/15/2009


Critical Lane Group

HCM Signalized Intersection Capacity Analysis
91: I-15 SB Ramp \& Pleasnt Grove Blvd.
Timing Plan: AM Peak


Analysis Period (min)
c Critical Lane Group

## SR-89 5/14/2007 2008 Existing Conditions

6/15/2009


HCM Signalized Intersection Capacity Analysis


## SR-89 5/14/2007 2008 Existing Conditions <br> 6/15/2009



## SR-89 5/14/2007 2008 Existing Condition <br> 6/15/200

HCM Unsignalized Intersection Capacity Analysis


[^1]| HCM Unsignalized Intersection Capacity Analy 42: 500 North \& 100 East |  |  |  |  |  |  |  | Timing Plan: AM Peak |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\checkmark$ | 4 | $\uparrow$ | $p$ |  | $\downarrow$ |  |  |
| Movement | WBL | WBR | NBT | NBR | SBL | SBT |  |  |
| Lane Configurations | * |  | $\uparrow$ | F | \% | $\uparrow$ |  |  |
| Volume (veh/h) | 32 | 72 | 377 | 18 | 51 | 852 |  |  |
| Sign Control | Stop |  | Free |  |  | Free |  |  |
| Grade | 0\% |  | 0\% |  |  | 0\% |  |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |  |
| Hourly flow rate (vph) | 35 | 78 | 410 | 20 | 55 | 926 |  |  |
| Pedestrians |  |  |  |  |  |  |  |  |
| Lane Width (tt) |  |  |  |  |  |  |  |  |
| Walking Speed (ft/s) |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |
| Right turn flare (veh) |  |  |  |  |  |  |  |  |
| Median type |  |  | None |  |  | TWLTL |  |  |
| Median storage veh) |  |  |  |  |  | 2 |  |  |
| Upstream signal (ft) |  |  |  |  |  |  |  |  |
| pX, platoon unblocked |  |  |  |  |  |  |  |  |
| vC , conflicting volume | 1447 | 410 |  |  | 429 |  |  |  |
| $\mathrm{vC1}$, stage 1 conf vol | 410 |  |  |  |  |  |  |  |
| $\mathrm{vC2}$, stage 2 conf vol | 1037 |  |  |  |  |  |  |  |
| vCu, unblocked vol | 1447 | 410 |  |  | 429 |  |  |  |
| tC, single (s) | 6.4 | 6.2 |  |  | 4.1 |  |  |  |
| tC, 2 stage (s) | 5.4 |  |  |  |  |  |  |  |
| tF (s) | 3.5 | 3.3 |  |  | 2.2 |  |  |  |
| p0 queue free \% | 88 | 88 |  |  | 95 |  |  |  |
| cM capacity (veh/h) | 302 | 642 |  |  | 1130 |  |  |  |
| Direction, Lane \# | WB 1 | NB 1 | NB 2 | SB 1 | SB 2 |  |  |  |
| Volume Total | 113 | 410 | 20 | 55 | 926 |  |  |  |
| Volume Left | 35 | 0 | 0 | 55 | 0 |  |  |  |
| Volume Right | 78 | 0 | 20 | 0 | 0 |  |  |  |
| cSH | 477 | 1700 | 1700 | 1130 | 1700 |  |  |  |
| Volume to Capacity | 0.24 | 0.24 | 0.01 | 0.05 | 0.54 |  |  |  |
| Queue Length 95th (tt) | 23 | 0 | 0 | 4 | 0 |  |  |  |
| Control Delay (s) | 14.9 | 0.0 | 0.0 | 8.3 | 0.0 |  |  |  |
| Lane LOS | B |  |  | A |  |  |  |  |
| Approach Delay (s) | 14.9 | 0.0 |  | 0.5 |  |  |  |  |
| Approach LOS | B |  |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 1.4 |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 57.7\% |  | Level | of Service | B |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |

HCM Unsignalized Intersection Capacity Analysis

| 48: 1100 North \& 1300 West |  |  |  |  |  |  |  |  |  | Timing Plan: AM Peak |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\Rightarrow$ |  | 7 | $\downarrow$ |  |  | 4 | 4 | $p$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | \% | $\dagger$ |  | \% | $\dagger$ |  |  | \$ |  |  | ¢ |  |
| Volume (veh/h) | , | 106 | 25 | 54 | 214 | 9 | 24 | 71 | 40 | 27 | 152 | 14 |
| Sign Control |  | Free |  |  | Free |  |  | Stop |  |  | Stop |  |
| Grade |  | 0\% |  |  | 0\% |  |  | 0\% |  |  | 0\% |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Hourly flow rate (vph) | 9 | 115 | 27 | 59 | 233 | 10 | 26 | 77 | 43 | 29 | 165 | 15 |
| Pedestrians |  |  |  |  |  |  |  |  |  |  |  |  |
| Lane Width (ft) |  |  |  |  |  |  |  |  |  |  |  |  |
| Walking Speed (fts) |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |  |  |  |  |
| Right tum flare (veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Median type |  | WLTL |  |  | TWLTL |  |  |  |  |  |  |  |
| Median storage veh) |  | 2 |  |  | 2 |  |  |  |  |  |  |  |
| Upstream signal (ft) |  |  |  |  |  |  |  |  |  |  |  |  |
| pX , platoon unblocked |  |  |  |  |  |  |  |  |  |  |  |  |
| vC , conflicting volume | 242 |  |  | 142 |  |  | 594 | 506 | 129 | 570 | 515 | 238 |
| vC1, stage 1 conf vol |  |  |  |  |  |  | 146 | 146 |  | 355 | 355 |  |
| vC2, stage 2 conf vol |  |  |  |  |  |  | 448 | 360 |  | 215 | 160 |  |
| vCu, unblocked vol | 242 |  |  | 142 |  |  | 594 | 506 | 129 | 570 | 515 | 238 |
| tC , single (s) | 4.1 |  |  | 4.1 |  |  | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 |
| $\mathrm{tC}, 2$ stage (s) |  |  |  |  |  |  | 6.1 | 5.5 |  | 6.1 | 5.5 |  |
| tF (s) | 2.2 |  |  | 2.2 |  |  | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 |
| p0 queue free \% | 99 |  |  | 96 |  |  | 93 | 86 | 95 | 94 | 70 | 98 |
| CM capacity (veh/h) | 1324 |  |  | 1440 |  |  | 383 | 561 | 921 | 521 | 559 | 801 |
| Direction, Lane \# | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | SB 1 |  |  |  |  |  |  |
| Volume Total | 9 | 142 | 59 | 242 | 147 | 210 |  |  |  |  |  |  |
| Volume Left | 9 | 0 | 59 | 0 | 26 | 29 |  |  |  |  |  |  |
| Volume Right | 0 | 27 | 0 | 10 | 43 | 15 |  |  |  |  |  |  |
| cSH | 1324 | 1700 | 1440 | 1700 | 580 | 566 |  |  |  |  |  |  |
| Volume to Capacity | 0.01 | 0.08 | 0.04 | 0.14 | 0.25 | 0.37 |  |  |  |  |  |  |
| Queue Length 95th (ft) | 0 | 0 | 3 | 0 | 25 | 43 |  |  |  |  |  |  |
| Control Delay (s) | 7.7 | 0.0 | 7.6 | 0.0 | 13.3 | 15.1 |  |  |  |  |  |  |
| Lane LOS | A |  | A |  | B | C |  |  |  |  |  |  |
| Approach Delay (s) | 0.4 |  | 1.5 |  | 13.3 | 15.1 |  |  |  |  |  |  |
| Approach LOS |  |  |  |  | B | C |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 7.0 |  |  |  |  |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 38.1\% |  | CU Level | of Service |  |  | A |  |  |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |  |  |  |  |

[^2]

HCM Unsignalized Intersection Capacity Analysis


Intersection Summary
Delay 10.7
HCM Level of Service
Intersection Capacity Utilization $42.0 \%$
Analysis Period (min)
ICU Level of Service


SR-89 5/14/2007 2008 Existing Conditions
6/12/2009
Syncho 7 - Report
Page 7

HCM Unsignalized Intersection Capacity Analysis

| 83: Pleasant Grove B | Blvd. |  |  |  |  |  |  |  |  | Timin | Plan: A | Peak |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\xlongequal{\prime}$ | $\rightarrow$ |  | $\checkmark$ |  |  | 4 | $\uparrow$ | $p$ |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | \% | $\stackrel{ }{\text { F }}$ |  | \% | $\dagger$ |  | \% | $\dagger$ |  |  | 4 |  |
| Volume (veh/h) | 392 | 346 | 2 | 30 | 552 | 26 | 1 | 35 | 19 | 4 | 42 | 607 |
| Sign Control |  | Free |  |  | Free |  |  | Stop |  |  | Stop |  |
| Grade |  | 0\% |  |  | 0\% |  |  | 0\% |  |  | 0\% |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Hourly flow rate (vph) | 426 | 376 | 2 | 33 | 600 | 28 | 1 | 38 | 21 | 4 | 46 | 660 |
| Pedestrians |  |  |  |  |  |  |  |  |  |  |  |  |
| Lane Width (t) |  |  |  |  |  |  |  |  |  |  |  |  |
| Walking Speed (fts) |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |  |  |  |  |
| Right tum flare (veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Median type |  | None |  |  | None |  |  |  |  |  |  |  |
| Median storage veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Upstream signal (ft) |  |  |  |  |  |  |  |  |  |  |  |  |
| pX , platoon unblocked |  |  |  |  |  |  |  |  |  |  |  |  |
| VC , conflicting volume | 628 |  |  | 378 |  |  | 2247 | 1923 | 377 | 1947 | 1910 | 614 |
| $\mathrm{vC1}$, stage 1 conf vol |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathrm{vC2}$, stage 2 conf vol |  |  |  |  |  |  |  |  |  |  |  |  |
| vCu, unblocked vol | 628 |  |  | 378 |  |  | 2247 | 1923 | 377 | 1947 | 1910 | 614 |
| tC, single (s) | 4.1 |  |  | 4.1 |  |  | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6. |
| tC, 2 stage (s) |  |  |  |  |  |  |  |  |  |  |  |  |
| tF (s) | 2.2 |  |  | 2.2 |  |  | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 |
| p0 queue free \% | 55 |  |  | 97 |  |  | 0 | 0 | 97 | 0 | 0 |  |
| cM capacity (veh/h) | 954 |  |  | 1180 |  |  | 0 | 36 | 669 | 0 | 37 | 492 |
| Direction, Lane \# | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | NB 2 | SB 1 |  |  |  |  |  |
| Volume Total | 426 | 378 | 33 | 628 | 1 | 59 | 710 |  |  |  |  |  |
| Volume Left | 426 | 0 | 33 | 0 | 1 | 0 | 4 |  |  |  |  |  |
| Volume Right | 0 | 2 | 0 | 28 | 0 | 21 | 660 |  |  |  |  |  |
| cSH | 954 | 1700 | 1180 | 1700 | 0 | 54 | 238 |  |  |  |  |  |
| Volume to Capacity | 0.45 | 0.22 | 0.03 | 0.37 | Er | 1.09 | 2.99 |  |  |  |  |  |
| Queue Length 95th (tt) | 58 | 0 | 2 | 0 | Er | 125 | 1580 |  |  |  |  |  |
| Control Delay (s) | 11.8 | 0.0 | 8.1 | 0.0 | Er | 273.2 | 936.0 |  |  |  |  |  |
| Lane LOS | B |  | A |  | F | F | F |  |  |  |  |  |
| Approach Delay (s) | 6.2 |  | 0.4 |  | Er |  | 936.0 |  |  |  |  |  |
| Approach LOS |  |  |  |  | F |  | F |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| Average Delay |  |  | Err |  |  |  |  |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 81.5\% |  | CU Level | f Service |  |  | D |  |  |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |  |  |  |  |

[^3]

HCM Unsignalized Intersection Capacity Analysis

| HCM Unsignalized Intersection Capacity Analysis |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 101: 1800 North \& 1300 West |  |  |  |  |  |  |  |  |  |  |  |  |  |

[^4]| HCM Unsignalized Intersection Capacity Analysis 103: 1800 North \& 100 East |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\rangle$ |  | 7 | $\checkmark$ | 4 | 4 | 4 | 4 | $p$ | $\checkmark$ | $\downarrow$ | $\checkmark$ |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | ¢ |  |  | ¢ |  | 7 | f |  |  | ${ }_{\text {¢ }}$ |  |
| Volume (veh/h) | 0 | 5 | 92 | 2 | 5 | 10 | 64 | 268 | 4 | 6 | 652 | 8 |
| Sign Control |  | Stop |  |  | Stop |  |  | Free |  |  | Free |  |
| Grade |  | 0\% |  |  | 0\% |  |  | 0\% |  |  | 0\% |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Hourly flow rate (vph) | 0 | 5 | 100 | 2 | 5 | 11 | 70 | 291 | 4 | 7 | 709 | 9 |
| Pedestrians |  |  |  |  |  |  |  |  |  |  |  |  |
| Lane Width (tt) |  |  |  |  |  |  |  |  |  |  |  |  |
| Walking Speed (ft/s) |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |  |  |  |  |
| Right turn flare (veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Median type |  |  |  |  |  |  |  | TWLTL |  |  | TWLTL |  |
| Median storage veh) |  |  |  |  |  |  |  | 2 |  |  | 2 |  |
| Upstream signal (ft) |  |  |  |  |  |  |  |  |  |  |  |  |
| pX, platoon unblocked |  |  |  |  |  |  |  |  |  |  |  |  |
| vC , conflicting volume | 1170 | 1161 | 713 | 1261 | 1163 | 293 | 717 |  |  | 296 |  |  |
| vC1, stage 1 conf vol | 726 | 726 |  | 433 | 433 |  |  |  |  |  |  |  |
| vC2, stage 2 conf vol | 444 | 435 |  | 829 | 730 |  |  |  |  |  |  |  |
| vCu, unblocked vol | 1170 | 1161 | 713 | 1261 | 1163 | 293 | 717 |  |  | 296 |  |  |
| tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 |  |  | 4.1 |  |  |
| tC, 2 stage (s) | 6.1 | 5.5 |  | 6.1 | 5.5 |  |  |  |  |  |  |  |
| tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 |  |  | 2.2 |  |  |
| p0 queue free \% | 100 | 98 | 77 | 99 | 98 | 99 | 92 |  |  | 99 |  |  |
| cM capacity (veh/h) | 348 | 362 | 432 | 197 | 323 | 746 | 884 |  |  | 1266 |  |  |
| Direction, Lane \# | EB 1 | WB 1 | NB 1 | NB 2 | SB 1 |  |  |  |  |  |  |  |
| Volume Total | 105 | 18 | 70 | 296 | 724 |  |  |  |  |  |  |  |
| Volume Left | 0 | 2 | 70 | 0 | 7 |  |  |  |  |  |  |  |
| Volume Right | 100 | 11 | 0 | 4 | 9 |  |  |  |  |  |  |  |
| cSH | 428 | 435 | 884 | 1700 | 1266 |  |  |  |  |  |  |  |
| Volume to Capacity | 0.25 | 0.04 | 0.08 | 0.17 | 0.01 |  |  |  |  |  |  |  |
| Queue Length 95th (ft) | 24 | 3 | 6 | 0 | 0 |  |  |  |  |  |  |  |
| Control Delay (s) | 16.2 | 13.6 | 9.4 | 0.0 | 0.1 |  |  |  |  |  |  |  |
| Lane LOS | C | B | A |  | A |  |  |  |  |  |  |  |
| Approach Delay (s) | 16.2 | 13.6 | 1.8 |  | 0.1 |  |  |  |  |  |  |  |
| Approach LOS | C | B |  |  |  |  |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 2.2 |  |  |  |  |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 59.5\% |  | Level | Service |  |  | B |  |  |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |  |  |  |  |

HCM Unsignalized Intersection Capacity Analysis


[^5]| HCM Unsignalized Intersection Capacity Analysis 106: 2600 North \& 900 West |  |  |  |  |  |  |  | Timing Plan: AM Peak |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\downarrow$ | $\rightarrow$ | $\leftarrow$ |  | $\checkmark$ | $\checkmark$ |  |  |
| Movement | EBL | EBT | WBT | WBR | SBL | SBR |  |  |
| Lane Configurations |  | $\uparrow$ | F |  | ${ }^{*}$ |  |  |  |
| Volume (veh/h) | 12 | 75 | 149 | 47 | 63 | 55 |  |  |
| Sign Control |  | Free | Free |  | Stop |  |  |  |
| Grade |  | 0\% | 0\% |  | 0\% |  |  |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |  |
| Hourly flow rate (vph) | 13 | 82 | 162 | 51 | 68 | 60 |  |  |
| Pedestrians |  |  |  |  |  |  |  |  |
| Lane Width (tt) |  |  |  |  |  |  |  |  |
| Walking Speed (ft/s) |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |
| Right turn flare (veh) |  |  |  |  |  |  |  |  |
| Median type |  | None | None |  |  |  |  |  |
| Median storage veh) |  |  |  |  |  |  |  |  |
| Upstream signal (tt) |  |  |  |  |  |  |  |  |
| pX , platoon unblocked |  |  |  |  |  |  |  |  |
| vC , conflicting volume | 213 |  |  |  | 295 | 188 |  |  |
| vC1, stage 1 conf vol |  |  |  |  |  |  |  |  |
| vC2, stage 2 conf vol |  |  |  |  |  |  |  |  |
| vCu, unblocked vol | 213 |  |  |  | 295 | 188 |  |  |
| t , single (s) | 4.1 |  |  |  | 6.4 | 6.2 |  |  |
| tC, 2 stage (s) |  |  |  |  |  |  |  |  |
| tF (s) | 2.2 |  |  |  | 3.5 | 3.3 |  |  |
| p0 queue free \% | 99 |  |  |  | 90 | 93 |  |  |
| cM capacity (veh/h) | 1357 |  |  |  | 689 | 855 |  |  |
| Direction, Lane \# | EB 1 | WB 1 | SB 1 |  |  |  |  |  |
| Volume Total | 95 | 213 | 128 |  |  |  |  |  |
| Volume Left | 13 | 0 | 68 |  |  |  |  |  |
| Volume Right | 0 | 51 | 60 |  |  |  |  |  |
| cSH | 1357 | 1700 | 758 |  |  |  |  |  |
| Volume to Capacity | 0.01 | 0.13 | 0.17 |  |  |  |  |  |
| Queue Length 95th (ft) | 1 | 0 | 15 |  |  |  |  |  |
| Control Delay (s) | 1.1 | 0.0 | 10.7 |  |  |  |  |  |
| Lane LOS | A |  | B |  |  |  |  |  |
| Approach Delay (s) | 1.1 | 0.0 | 10.7 |  |  |  |  |  |
| Approach LOS |  |  | B |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 3.4 |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 27.6\% |  | CU Level | Service | A |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |

HCM Unsignalized Intersection Capacity Analysis

| 108: Huntsman Lane | \& 90 | Wes |  |  |  |  |  |  |  | Timing Plan: AM Peak |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\rangle$ | $\rightarrow$ | $\geqslant$ | 7 | $\leftarrow$ |  | 4 | $\dagger$ | $p$ | $\checkmark$ | $\downarrow$ | $\downarrow$ |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | $\dagger$ |  |  | \$ |  |  | ¢ |  |  | ${ }_{\dagger}$ |  |
| Sign Control |  | Stop |  |  | Stop |  |  | Stop |  |  | Stop |  |
| Volume (vph) | 0 | 29 | 3 | 0 | 23 | 0 | 10 | 20 | 3 | 3 | 43 | 0 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Hourly flow rate (vph) | 0 | 32 | 3 | 0 | 25 | 0 | 11 | 22 | 3 | 3 | 47 | 0 |
| Direction, Lane \# | EB 1 | WB 1 | NB 1 | SB 1 |  |  |  |  |  |  |  |  |
| Volume Total (vph) | 35 | 25 | 36 | 50 |  |  |  |  |  |  |  |  |
| Volume Left (vph) | 0 | 0 | 11 | 3 |  |  |  |  |  |  |  |  |
| Volume Right (vph) | 3 | 0 | 3 | 0 |  |  |  |  |  |  |  |  |
| Hadj (s) | -0.02 | 0.03 | 0.04 | 0.05 |  |  |  |  |  |  |  |  |
| Departure Headway (s) | 4.1 | 4.2 | 4.1 | 4.1 |  |  |  |  |  |  |  |  |
| Degree Utilization, x | 0.04 | 0.03 | 0.04 | 0.06 |  |  |  |  |  |  |  |  |
| Capacity (veh/h) | 856 | 843 | 848 | 857 |  |  |  |  |  |  |  |  |
| Control Delay (s) | 7.3 | 7.3 | 7.3 | 7.4 |  |  |  |  |  |  |  |  |
| Approach Delay (s) | 7.3 | 7.3 | 7.3 | 7.4 |  |  |  |  |  |  |  |  |
| Approach LOS | A | A | A | A |  |  |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| Delay |  |  | 7.3 |  |  |  |  |  |  |  |  |  |
| HCM Level of Service |  |  | A |  |  |  |  |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 14.8\% |  | CU Leve | Service |  |  | A |  |  |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |  |  |  |  |

[^6]


Intersection Summar
Delay
HCM Level of Service 8.2
Intersection Capacity Utilization A Analysis Period (min)
30.1\% ICU Level of Service
$-$

R-89 5/14/2007 2008 Existing Conditions
6/12/2009

| HCM Unsignalized Int 123: 1100 North \& 600 | $\begin{aligned} & \text { terse } \\ & 0 \mathrm{We} \end{aligned}$ | ction st | Capac | y Ana |  |  |  |  |  | Timin | Plan: | Peak |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\rangle$ |  | $\rangle$ | $\checkmark$ | $\leftarrow$ | 4 | 4 | $\dagger$ | $>$ | $\checkmark$ | $\downarrow$ | $\downarrow$ |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | ¢ |  | 7 | A |  |  | \$ |  |  | ${ }_{4}$ |  |
| Volume (veh/h) | 12 | 188 | 26 | 79 | 205 | 22 | 10 | 46 | 19 | 35 | 124 | 25 |
| Sign Control |  | Free |  |  | Free |  |  | Stop |  |  | Stop |  |
| Grade |  | 0\% |  |  | 0\% |  |  | 0\% |  |  | 0\% |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Hourly flow rate (vph) | 13 | 204 | 28 | 86 | 223 | 24 | 11 | 50 | 21 | 38 | 135 | 27 |
| Pedestrians |  |  |  |  |  |  |  |  |  |  |  |  |
| Lane Width (tt) |  |  |  |  |  |  |  |  |  |  |  |  |
| Walking Speed (tt/s) |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |  |  |  |  |
| Right turn flare (veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Median type |  | TWLTL |  |  | TWLTL |  |  |  |  |  |  |  |
| Median storage veh) |  | 2 |  |  | 2 |  |  |  |  |  |  |  |
| Upstream signal (ft) |  |  |  |  |  |  |  |  |  |  |  |  |
| pX, platoon unblocked |  |  |  |  |  |  |  |  |  |  |  |  |
| vC , conflicting volume | 247 |  |  | 233 |  |  | 734 | 663 | 218 | 697 | 665 | 235 |
| vC1, stage 1 conf vol |  |  |  |  |  |  | 245 | 245 |  | 407 | 407 |  |
| vC2, stage 2 conf vol |  |  |  |  |  |  | 489 | 418 |  | 290 | 259 |  |
| vCu , unblocked vol | 247 |  |  | 233 |  |  | 734 | 663 | 218 | 697 | 665 | 235 |
| tC , single (s) | 4.1 |  |  | 4.1 |  |  | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 |
| tC, 2 stage (s) |  |  |  |  |  |  | 6.1 | 5.5 |  | 6.1 | 5.5 |  |
| tF (s) | 2.2 |  |  | 2.2 |  |  | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 |
| p0 queue free \% | 99 |  |  | 94 |  |  | 97 | 90 | 97 | 92 | 73 | 97 |
| cM capacity (veh/h) | 1319 |  |  | 1335 |  |  | 356 | 498 | 821 | 468 | 491 | 804 |
| Direction, Lane \# | EB 1 | WB 1 | WB 2 | NB 1 | SB 1 |  |  |  |  |  |  |  |
| Volume Total | 246 | 86 | 247 | 82 | 200 |  |  |  |  |  |  |  |
| Volume Left | 13 | 86 | 0 | 11 | 38 |  |  |  |  |  |  |  |
| Volume Right | 28 | 0 | 24 | 21 | 27 |  |  |  |  |  |  |  |
| cSH | 1319 | 1335 | 1700 | 522 | 513 |  |  |  |  |  |  |  |
| Volume to Capacity | 0.01 | 0.06 | 0.15 | 0.16 | 0.39 |  |  |  |  |  |  |  |
| Queue Length 95th (ft) | 1 | 5 | 0 | 14 | 46 |  |  |  |  |  |  |  |
| Control Delay (s) | 0.5 | 7.9 | 0.0 | 13.2 | 16.4 |  |  |  |  |  |  |  |
| Lane LOS | A | A |  | B | C |  |  |  |  |  |  |  |
| Approach Delay (s) | 0.5 | 2.0 |  | 13.2 | 16.4 |  |  |  |  |  |  |  |
| Approach LOS |  |  |  | B | C |  |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 6.0 |  |  |  |  |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 49.4\% |  | CU Level | of Service |  |  | A |  |  |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |  |  |  |  |

HCM Unsignalized Intersection Capacity Analysis


[^7]| HCM Unsignalized Intersection Capacity Analysis 127: 1100 North \& 300 East |  |  |  |  |  |  |  |  |  | Timing Plan: AM Peak |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\rangle$ |  |  | $\checkmark$ | $\leftarrow$ | 4 | 4 | 4 | $>$ | - | $\downarrow$ | $\downarrow$ |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | 7 | $\dagger$ |  | \% | 今 |  |  | \$ |  |  | ${ }_{\text {¢ }}$ |  |
| Volume (veh/h) | 1 | 68 | 60 | 81 | 168 | 3 | 54 | 20 | 30 | 1 | 54 | 17 |
| Sign Control |  | Free |  |  | Free |  |  | Stop |  |  | Stop |  |
| Grade |  | 0\% |  |  | 0\% |  |  | 0\% |  |  | 0\% |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Hourly flow rate (vph) | 1 | 74 | 65 | 88 | 183 | 3 | 59 | 22 | 33 | 1 | 59 | 18 |
| Pedestrians |  |  |  |  |  |  |  |  |  |  |  |  |
| Lane Width (tt) |  |  |  |  |  |  |  |  |  |  |  |  |
| Walking Speed (ft/s) |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |  |  |  |  |
| Right turn flare (veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Median type |  | WLTL |  |  | TWLTL |  |  |  |  |  |  |  |
| Median storage veh) |  | 2 |  |  | 2 |  |  |  |  |  |  |  |
| Upstream signal (ft) |  | 1157 |  |  |  |  |  |  |  |  |  |  |
| pX, platoon unblocked |  |  |  |  |  |  |  |  |  |  |  |  |
| vC , conflicting volume | 186 |  |  | 139 |  |  | 515 | 471 | 107 | 480 | 502 | 184 |
| $\mathrm{vC1}$, stage 1 conf vol |  |  |  |  |  |  | 109 | 109 |  | 360 | 360 |  |
| $\mathrm{vC2}$, stage 2 conf vol |  |  |  |  |  |  | 407 | 362 |  | 120 | 141 |  |
| vCu, unblocked vol | 186 |  |  | 139 |  |  | 515 | 471 | 107 | 480 | 502 | 184 |
| tC , single (s) | 4.1 |  |  | 4.1 |  |  | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 |
| tC, 2 stage (s) |  |  |  |  |  |  | 6.1 | 5.5 |  | 6.1 | 5.5 |  |
| tF (s) | 2.2 |  |  | 2.2 |  |  | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 |
| p0 queue free \% | 100 |  |  | 94 |  |  | 88 | 96 | 97 | 100 | 89 | 98 |
| cM capacity (veh/h) | 1389 |  |  | 1444 |  |  | 496 | 561 | 948 | 573 | 549 | 858 |
| Direction, Lane \# | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | SB 1 |  |  |  |  |  |  |
| Volume Total | 1 | 139 | 88 | 186 | 113 | 78 |  |  |  |  |  |  |
| Volume Left | 1 | 0 | 88 | 0 | 59 | 1 |  |  |  |  |  |  |
| Volume Right | 0 | 65 | 0 | 3 | 33 | 18 |  |  |  |  |  |  |
| cSH | 1389 | 1700 | 1444 | 1700 | 591 | 600 |  |  |  |  |  |  |
| Volume to Capacity | 0.00 | 0.08 | 0.06 | 0.11 | 0.19 | 0.13 |  |  |  |  |  |  |
| Queue Length 95th (ft) | 0 | 0 | 5 | 0 | 18 | 11 |  |  |  |  |  |  |
| Control Delay (s) | 7.6 | 0.0 | 7.7 | 0.0 | 12.5 | 11.9 |  |  |  |  |  |  |
| Lane LOS | A |  | A |  | B | B |  |  |  |  |  |  |
| Approach Delay (s) | 0.1 |  | 2.5 |  | 12.5 | 11.9 |  |  |  |  |  |  |
| Approach LOS |  |  |  |  | B | B |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 5.0 |  |  |  |  |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 34.9\% |  | CU Level | of Service |  |  | A |  |  |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |  |  |  |  |

HCM Unsignalized Intersection Capacity Analysis

| 130: 1100 North \& 500 East |  |  |  |  |  |  |  |  |  | Timing Plan: AM Peak |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\Rightarrow$ |  |  | $\checkmark$ | - |  | 4 | $\uparrow$ | $p$ | $\checkmark$ | $\downarrow$ | $\downarrow$ |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | ¢ |  |  | ¢ |  |  | \$ |  |  | \$ |  |
| Volume (veh/h) | 5 | 58 | 10 | 4 | 173 | 2 | 14 | 4 | 0 | 3 | 10 | 9 |
| Sign Control |  | Free |  |  | Free |  |  | Stop |  |  | Stop |  |
| Grade |  | 0\% |  |  | 0\% |  |  | 0\% |  |  | 0\% |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Hourly flow rate (vph) | 5 | 63 | 11 | 4 | 188 | 2 | 15 | 4 | 0 | 3 | 11 | 10 |
| Pedestrians |  |  |  |  |  |  |  |  |  |  |  |  |
| Lane Width (tt) |  |  |  |  |  |  |  |  |  |  |  |  |
| Walking Speed (ft/s) |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |  |  |  |  |
| Right turn flare (veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Median type |  | TWLTL |  |  | TWLTL |  |  |  |  |  |  |  |
| Median storage veh) |  | 2 |  |  | 2 |  |  |  |  |  |  |  |
| Upstream signal (ft) |  |  |  |  |  |  |  |  |  |  |  |  |
| pX, platoon unblocked |  |  |  |  |  |  |  |  |  |  |  |  |
| vC, conflicting volume | 190 |  |  | 74 |  |  | 292 | 278 | 68 | 279 | 283 | 189 |
| vC1, stage 1 conf vol |  |  |  |  |  |  | 79 | 79 |  | 198 | 198 |  |
| vC2, stage 2 conf vol |  |  |  |  |  |  | 213 | 199 |  | 82 | 85 |  |
| vCu, unblocked vol | 190 |  |  | 74 |  |  | 292 | 278 | 68 | 279 | 283 | 189 |
| tC, single (s) | 4.1 |  |  | 4.1 |  |  | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 |
| tC, 2 stage (s) |  |  |  |  |  |  | 6.1 | 5.5 |  | 6.1 | 5.5 |  |
| tF (s) | 2.2 |  |  | 2.2 |  |  | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 |
| p0 queue free \% | 100 |  |  | 100 |  |  | 98 | 99 | 100 | 100 | 98 | 99 |
| cM capacity (veh/h) | 1384 |  |  | 1526 |  |  | 730 | 696 | 995 | 761 | 698 | 853 |
| Direction, Lane \# | EB 1 | WB 1 | NB 1 | SB 1 |  |  |  |  |  |  |  |  |
| Volume Total | 79 | 195 | 20 | 24 |  |  |  |  |  |  |  |  |
| Volume Left | 5 | 4 | 15 | 3 |  |  |  |  |  |  |  |  |
| Volume Right | 11 | 2 | 0 | 10 |  |  |  |  |  |  |  |  |
| cSH | 1384 | 1526 | 722 | 763 |  |  |  |  |  |  |  |  |
| Volume to Capacity | 0.00 | 0.00 | 0.03 | 0.03 |  |  |  |  |  |  |  |  |
| Queue Length 95th (tt) | 0 | 0 | 2 | 2 |  |  |  |  |  |  |  |  |
| Control Delay (s) | 0.6 | 0.2 | 10.1 | 9.9 |  |  |  |  |  |  |  |  |
| Lane LOS | A | A | B | A |  |  |  |  |  |  |  |  |
| Approach Delay (s) | 0.6 | 0.2 | 10.1 | 9.9 |  |  |  |  |  |  |  |  |
| Approach LOS |  |  | , | A |  |  |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 1.6 |  |  |  |  |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 20.9\% |  | CU Level | f Service |  |  | A |  |  |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |  |  |  |  |

[^8]| HCM Unsignalized Intersection Capacity Analysis <br> 134: 1100 North \& Murdock Drive <br> Timing Plan: AM Peak |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 |  |  | 7 |  | 4 | 4 | $\dagger$ | 7 |  | $\downarrow$ | $\checkmark$ |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | ¢ |  |  | ¢ |  |  | ¢ |  |  | ¢ |  |
| Volume (veh/h) | 6 | 52 | 11 | 0 | 152 | 2 | 34 | 1 | 0 | 2 | 2 | 14 |
| Sign Control |  | Free |  |  | Free |  |  | Stop |  |  | Stop |  |
| Grade |  | 0\% |  |  | 0\% |  |  | 0\% |  |  | 0\% |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Hourly flow rate (vph) | 7 | 57 | 12 | 0 | 165 | 2 | 37 | 1 | 0 | 2 | 2 | 15 |
| Pedestrians |  |  |  |  |  |  |  |  |  |  |  |  |
| Lane Width (tt) |  |  |  |  |  |  |  |  |  |  |  |  |
| Walking Speed (ft/s) |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |  |  |  |  |
| Right turn flare (veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Median type |  | TWLTL |  |  | None |  |  |  |  |  |  |  |
| Median storage veh) |  | 2 |  |  |  |  |  |  |  |  |  |  |
| Upstream signal (ft) |  |  |  |  |  |  |  |  |  |  |  |  |
| pX, platoon unblocked |  |  |  |  |  |  |  |  |  |  |  |  |
| vC , conflicting volume | 167 |  |  | 68 |  |  | 258 | 243 | 62 | 242 | 248 | 166 |
| $\mathrm{vC1}$, stage 1 conf vol |  |  |  |  |  |  | 76 | 76 |  | 166 | 166 |  |
| vC2, stage 2 conf vol |  |  |  |  |  |  | 183 | 167 |  | 76 | 82 |  |
| vCu, unblocked vol | 167 |  |  | 68 |  |  | 258 | 243 | 62 | 242 | 248 | 166 |
| tC , single (s) | 4.1 |  |  | 4.1 |  |  | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 |
| tC, 2 stage (s) |  |  |  |  |  |  | 6.1 | 5.5 |  | 6.1 | 5.5 |  |
| tF (s) | 2.2 |  |  | 2.2 |  |  | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 |
| p0 queue free \% | 100 |  |  | 100 |  |  | 95 | 100 | 100 | 100 | 100 | 98 |
| cM capacity (veh/h) | 1410 |  |  | 1533 |  |  | 762 | 719 | 1002 | 794 | 722 | 878 |
| Direction, Lane \# | EB 1 | WB 1 | NB 1 | SB 1 |  |  |  |  |  |  |  |  |
| Volume Total | 75 | 167 | 38 | 20 |  |  |  |  |  |  |  |  |
| Volume Left | 7 | 0 | 37 | 2 |  |  |  |  |  |  |  |  |
| Volume Right | 12 | 2 | 0 | 15 |  |  |  |  |  |  |  |  |
| cSH | 1410 | 1533 | 761 | 848 |  |  |  |  |  |  |  |  |
| Volume to Capacity | 0.00 | 0.00 | 0.05 | 0.02 |  |  |  |  |  |  |  |  |
| Queue Length 95th (tt) | 0 | 0 | 4 | 2 |  |  |  |  |  |  |  |  |
| Control Delay (s) | 0.7 | 0.0 | 10.0 | 9.3 |  |  |  |  |  |  |  |  |
| Lane LOS | A |  | A | A |  |  |  |  |  |  |  |  |
| Approach Delay (s) | 0.7 | 0.0 | 10.0 | 9.3 |  |  |  |  |  |  |  |  |
| Approach LOS |  |  | A | A |  |  |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 2.0 |  |  |  |  |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 23.8\% |  | Leve | Service |  |  | A |  |  |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |  |  |  |  |

## SR-89 5/14/2007 2008 Existing Condition <br> 12/2009

HCM Unsignalized Intersection Capacity Analysis
139: 500 North \& 700 East


[^9]| HCM Unsignalized Intersection Capacity Analysis 145: 200 South \& Locust Ave |  |  |  |  |  |  |  | Timing Plan: AM Peak |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\rightarrow$ | $\cdots$ | $\sigma$ | $\leftarrow$ | 4 | $\stackrel{ }{ }$ |  |  |
| Movement | EBT | EBR | WBL | WBT | NWL | NWR |  |  |
| Lane Configurations | f |  |  | $\uparrow$ | * |  |  |  |
| Volume (veh/h) | 121 | 55 | 39 | 178 | 84 | 25 |  |  |
| Sign Control | Free |  |  | Free | Stop |  |  |  |
| Grade | 0\% |  |  | 0\% | 0\% |  |  |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |  |
| Hourly flow rate (vph) | 132 | 60 | 42 | 193 | 91 | 27 |  |  |
| Pedestrians |  |  |  |  |  |  |  |  |
| Lane Width (tt) |  |  |  |  |  |  |  |  |
| Walking Speed (ft/s) |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |
| Right turn flare (veh) |  |  |  |  |  |  |  |  |
| Median type | None |  |  | None |  |  |  |  |
| Median storage veh) |  |  |  |  |  |  |  |  |
| Upstream signal (ft) |  |  |  |  |  |  |  |  |
| pX, platoon unblocked |  |  |  |  |  |  |  |  |
| vC , conflicting volume |  |  | 191 |  | 440 | 161 |  |  |
| vC1, stage 1 conf vol |  |  |  |  |  |  |  |  |
| $\mathrm{vC2}$, stage 2 conf vol |  |  |  |  |  |  |  |  |
| vCu, unblocked vol |  |  | 191 |  | 440 | 161 |  |  |
| tC, single (s) |  |  | 4.1 |  | 6.4 | 6.2 |  |  |
| tC, 2 stage (s) |  |  |  |  |  |  |  |  |
| tF (s) |  |  | 2.2 |  | 3.5 | 3.3 |  |  |
| p0 queue free \% |  |  | 97 |  | 84 | 97 |  |  |
| cM capacity (veh/h) |  |  | 1382 |  | 557 | 884 |  |  |
| Direction, Lane \# | EB 1 | WB 1 | NW 1 |  |  |  |  |  |
| Volume Total | 191 | 236 | 118 |  |  |  |  |  |
| Volume Left | 0 | 42 | 91 |  |  |  |  |  |
| Volume Right | 60 | 0 | 27 |  |  |  |  |  |
| cSH | 1700 | 1382 | 609 |  |  |  |  |  |
| Volume to Capacity | 0.11 | 0.03 | 0.19 |  |  |  |  |  |
| Queue Length 95th (ft) | 0 | 2 | 18 |  |  |  |  |  |
| Control Delay (s) | 0.0 | 1.6 | 12.3 |  |  |  |  |  |
| Lane LOS |  | A | B |  |  |  |  |  |
| Approach Delay (s) | 0.0 | 1.6 | 12.3 |  |  |  |  |  |
| Approach LOS |  |  | B |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 3.4 |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 37.4\% | ICU Level of Service |  |  | A |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |

## SR-89 5/14/2007 2008 Existing Condition <br> 12/2009

HCM Unsignalized Intersection Capacity Analysis


[^10]| HCM Unsignalized Intersection Capacity Analysis 149: 200 South \& Murdock Drive |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\rangle$ | $\rightarrow$ |  | $\checkmark$ | 4 | 4 | 4 | 4 | $p$ | $\downarrow$ | $\downarrow$ | $\checkmark$ |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | ¢ |  |  | ¢ |  |  | ¢ |  |  | ${ }_{4}$ |  |
| Volume (veh/h) | 15 | 39 | 18 | 0 | 96 | 0 | 45 | 12 | 0 | 15 | 39 | 18 |
| Sign Control |  | Free |  |  | Free |  |  | Stop |  |  | Stop |  |
| Grade |  | 0\% |  |  | 0\% |  |  | 0\% |  |  | 0\% |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Hourly flow rate (vph) | 16 | 42 | 20 | 0 | 104 | 0 | 49 | 13 | 0 | 16 | 42 | 20 |
| Pedestrians |  |  |  |  |  |  |  |  |  |  |  |  |
| Lane Width (tt) |  |  |  |  |  |  |  |  |  |  |  |  |
| Walking Speed (ft/s) |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |  |  |  |  |
| Right turn flare (veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Median type |  | None |  |  | None |  |  |  |  |  |  |  |
| Median storage veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Upstream signal (ft) |  |  |  |  |  |  |  |  |  |  |  |  |
| pX, platoon unblocked |  |  |  |  |  |  |  |  |  |  |  |  |
| vC , conflicting volume | 104 |  |  | 62 |  |  | 230 | 189 | 52 | 196 | 199 | 104 |
| $\mathrm{vC1}$, stage 1 conf vol |  |  |  |  |  |  |  |  |  |  |  |  |
| vC2, stage 2 conf vol |  |  |  |  |  |  |  |  |  |  |  |  |
| vCu, unblocked vol | 104 |  |  | 62 |  |  | 230 | 189 | 52 | 196 | 199 | 104 |
| tC, single (s) | 4.1 |  |  | 4.1 |  |  | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 |
| tC, 2 stage (s) |  |  |  |  |  |  |  |  |  |  |  |  |
| tF (s) | 2.2 |  |  | 2.2 |  |  | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 |
| p0 queue free \% | 99 |  |  | 100 |  |  | 93 | 98 | 100 | 98 | 94 | 98 |
| cM capacity (veh/h) | 1487 |  |  | 1541 |  |  | 671 | 698 | 1015 | 746 | 689 | 950 |
| Direction, Lane \# | EB 1 | WB 1 | NB 1 | SB 1 |  |  |  |  |  |  |  |  |
| Volume Total | 78 | 104 | 62 | 78 |  |  |  |  |  |  |  |  |
| Volume Left | 16 | 0 | 49 | 16 |  |  |  |  |  |  |  |  |
| Volume Right | 20 | 0 | 0 | 20 |  |  |  |  |  |  |  |  |
| cSH | 1487 | 1541 | 677 | 753 |  |  |  |  |  |  |  |  |
| Volume to Capacity | 0.01 | 0.00 | 0.09 | 0.10 |  |  |  |  |  |  |  |  |
| Queue Length 95th (ft) | 1 | 0 |  | 9 |  |  |  |  |  |  |  |  |
| Control Delay (s) | 1.6 | 0.0 | 10.9 | 10.3 |  |  |  |  |  |  |  |  |
| Lane LOS | A |  | B | B |  |  |  |  |  |  |  |  |
| Approach Delay (s) | 1.6 | 0.0 | 10.9 | 10.3 |  |  |  |  |  |  |  |  |
| Approach LOS |  |  | B | B |  |  |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 5.0 |  |  |  |  |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 26.7\% |  | Level | Service |  |  | A |  |  |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |  |  |  |  |

HCM Unsignalized Intersection Capacity Analysis

| 152: 200 South \& 1300 East |  |  |  |  |  |  |  |  |  | Timing Plan: AM Peak |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\Rightarrow$ |  |  |  |  | 4 | 4 | $\dagger$ |  | $\checkmark$ | $\downarrow$ | $\checkmark$ |
| Movement | EBL | EBT | EBR | WBL WBT |  | WBR | NBL | NBT | NBR | SBL SBT |  | SBR |
| Lane Configurations | ${ }_{\text {¢ }}$ |  |  | ${ }_{\text {¢ }}$ |  |  | ¢ |  |  | ¢ |  |  |
| Volume (veh/h) | 4 | 13 | 10 | 4 | 25 | 8 | 23 | 10 | 2 | 2 | 25 | 13 |
| Sign Control |  | Free |  | Free |  |  | Stop |  |  | Stop |  |  |
| Grade |  | 0\% |  | 0\% |  |  | 0\% |  |  | 0\% |  |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| $\begin{array}{llllllllll}\text { Hourly flow rate (vph) } & 4 & 14 & 11 & 4 & 27 & 9 & 25 & 11 & \\ \text { Pedestrians }\end{array}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Lane Width (ft) |  |  |  |  |  |  |  |  |  |  |  |  |
| Walking Speed (ft/s) |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |  |  |  |  |
| Right turn flare (veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Median type |  | None |  |  | None |  |  |  |  |  |  |  |
| Median storage veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Upstream signal (ft) |  |  |  |  |  |  |  |  |  |  |  |  |
| pX, platoon unblocked |  |  |  |  |  |  |  |  |  |  |  |  |
| vC , conflicting volume | 36 |  |  | 25 |  |  | 96 | 73 | 20 | 76 | 74 | 32 |
| vC1, stage 1 conf vol |  |  |  |  |  |  |  |  |  |  |  |  |
| vC2, stage 2 conf vol |  |  |  |  |  |  |  |  |  |  |  |  |
| vCu, unblocked vol | 36 |  |  | 25 |  |  | 96 | 73 | 20 | 76 | 74 | 32 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| tF (s) | 2.2 |  |  | 2.2 |  |  | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 |
| p0 queue free \% | 100 |  |  | 100 |  |  | 97 | 99 | 100 | 100 | 97 | 99 |
| cM capacity (veh/h) | 1575 |  |  | 1589 |  |  | 849 | 813 | 1058 | 899 | 812 | 1042 |
| Direction, Lane \# | EB 1 | WB 1 | NB 1 | SB 1 |  |  |  |  |  |  |  |  |
| Volume Total | 29 | 40 | 38 | 43 |  |  |  |  |  |  |  |  |
| Volume Left | 4 | 4 | 25 | 2 |  |  |  |  |  |  |  |  |
| Volume Right | 11 | 9 | 2 | 14 |  |  |  |  |  |  |  |  |
| cSH | 1575 | 1589 | 848 | 879 |  |  |  |  |  |  |  |  |
| Volume to Capacity | 0.00 | 0.00 | 0.04 | 0.05 |  |  |  |  |  |  |  |  |
| Queue Length 95th (tt) | 0 | 0 | . | 4 |  |  |  |  |  |  |  |  |
| Control Delay (s) | 1.1 | 0.8 | 9.4 | 9.3 |  |  |  |  |  |  |  |  |
| Lane LOS | A | A | A | A |  |  |  |  |  |  |  |  |
| Approach Delay (s) | 1.1 | 0.8 | 9.4 | 9.3 |  |  |  |  |  |  |  |  |
| Approach LOS A A |  |  |  |  |  |  |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 5.5 |  |  |  |  |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 18.6\% |  | CU Level | Service |  |  | A |  |  |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |  |  |  |  |

## SR-89 5/14/2007 2008 Existing Conditions <br> 6/12/2009



HCM Unsignalized Intersection Capacity Analysis
165: 1000 South \& Locust Ave


[^11]

HCM Signalized Intersection Capacity Analysis


## SR-89 5/14/2007 2008 Existing Conditions

6/15/2009


Analysis Period (min)

HCM Signalized Intersection Capacity Analysis
11: SR-89 \& Pleasant Grove Blvd
Timing Plan: PM Peak


## SR-89 5/14/2007 2008 Existing Conditions

6/15/2009


Cnalysitical Lane Group

HCM Signalized Intersection Capacity Analysis
14： 700 South \＆SR－89
Timing Plan：PM Peak

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Contigurations | \％ | ¢ |  | \％ | F |  | 7 | ヶ个个 | 7 | \％ | 个个官 |  |
| Volume（vph） | 114 | 264 | 73 | 302 | 151 | 16 | 119 | 1355 | 279 | 19 | 959 |  |
| Ideal Flow（vphpl） | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Total Lost time（s） | 6.0 | 6.0 |  | 6.0 | 6.0 |  | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 |  |
| Lane Util．Factor | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 0.91 | 1.00 | 1.00 | 0.91 |  |
| Fit | 1.00 | 0.97 |  | 1.00 | 0.99 |  | 1.00 | 1.00 | 0.85 | 1.00 | 0.99 |  |
| Flt Protected | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 |  |
| Satd．Flow（prot） | 1770 | 1802 |  | 1770 | 1837 |  | 1770 | 5085 | 1583 | 1770 | 5037 |  |
| Flt Permitted | 0.64 | 1.00 |  | 0.16 | 1.00 |  | 0.16 | 1.00 | 1.00 | 0.10 | 1.00 |  |
| Satd．Flow（perm） | 1198 | 1802 |  | 290 | 1837 |  | 294 | 5085 | 1583 | 178 | 5037 |  |
| Peak－hour factor，PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.9 |
| Adj．Flow（vph） | 124 | 287 | 79 | 328 | 164 | 17 | 129 | 1473 | 303 | 21 | 1042 | 70 |
| RTOR Reduction（vph） | 0 | 9 | 0 | 0 | 3 | 0 | 0 | 0 | 47 | 0 | 6 |  |
| Lane Group Flow（vph） | 124 | 357 | 0 | 328 | 178 | 0 | 129 | 1473 | 256 | 21 | 1106 |  |
| Turn Type | pm＋pt |  |  | pm＋pt |  |  | pm＋pt |  | Perm | Perm |  |  |
| Protected Phases | 7 | 4 |  |  | 8 |  | 5 | 2 |  |  | 6 |  |
| Permitted Phases | 4 |  |  | 8 |  |  | 2 |  | 2 | 6 |  |  |
| Actuated Green，G（s） | 33.2 | 27.2 |  | 53.2 | 41.2 |  | 54.8 | 54.8 | 54.8 | 41.8 | 41.8 |  |
| Effective Green，g（s） | 33.2 | 27.2 |  | 53.2 | 41.2 |  | 54.8 | 54.8 | 54.8 | 41.8 | 41.8 |  |
| Actuated g／C Ratio | 0.28 | 0.23 |  | 0.44 | 0.34 |  | 0.46 | 0.46 | 0.46 | 0.35 | 0.35 |  |
| Clearance Time（s） | 6.0 | 6.0 |  | 6.0 | 6.0 |  | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 |  |
| Vehicle Extension（s） | 3.0 | 3.0 |  | 3.0 | 3.0 |  | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |  |
| Lane Grp Cap（vph） | 360 | 408 |  | 375 | 631 |  | 220 | 2322 | 723 | 62 | 1755 |  |
| $\mathrm{v} / \mathrm{s}$ Ratio Prot | 0.02 | 0.20 |  | c0．15 | 0.10 |  | 0.03 | c0．29 |  |  | 0.22 |  |
| $\mathrm{v} / \mathrm{s}$ Ratio Perm | 0.08 |  |  | c0．24 |  |  | 0.23 |  | 0.16 | 0.12 |  |  |
| v／c Ratio | 0.34 | 0.88 |  | 0.87 | 0.28 |  | 0.59 | 0.63 | 0.35 | 0.34 | 0.63 |  |
| Uniform Delay，d1 | 33.8 | 44.8 |  | 28.9 | 28.6 |  | 38.8 | 24.9 | 21.1 | 28.9 | 32.6 |  |
| Progression Factor | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 0.81 | 0.76 | 0.69 | 0.84 | 0.86 |  |
| Incremental Delay，d2 | 0.6 | 18.6 |  | 19.7 | 0.2 |  | 3.4 | 1.2 | 1.2 | 14.0 | 1.7 |  |
| Delay（s） | 34.3 | 63.3 |  | 48.6 | 28.9 |  | 34.8 | 20.0 | 15.7 | 38.4 | 29.7 |  |
| Level of Service | C | E |  | D | C |  | C | C | B | D | C |  |
| Approach Delay（s） |  | 56.0 |  |  | 41.6 |  |  | 20.3 |  |  | 29.9 |  |
| Approach LOS |  | E |  |  | D |  |  | C |  |  | C |  |


| Intersection Summary |  |  |  |
| :--- | ---: | :--- | ---: |
| HCM Average Control Delay | 30.0 | HCM Level of Service | C |
| HCM Volume to Capacity ratio | 0.73 | Sum of lost time（s） | 12.0 |
| Actuated CCcle Lenght（s） | 120.0 | ICU Eet of Sevice | E |
| Intersection Capacity Utilization | $84.6 \%$ |  |  |
| Analysis Period（min） | 15 |  |  |

Analysis Period（min）
c Critical Lane Group


Critical Lane Group

HCM Signalized Intersection Capacity Analysis
40: 700 South \& Geneva Road
Timing Plan: PM Peak

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | ${ }^{7}$ | $\stackrel{\square}{1}$ |  | * | $\uparrow$ | F' |  | $\uparrow \uparrow$ | F' | \% | $\uparrow \uparrow$ |  |
| Volume (vph) | 34 | 150 | 38 | 122 | 151 | 16 | 64 | 700 | 200 | 54 | 402 |  |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 190 |
| Total Lost time (s) | 4.0 | 4.0 |  | 4.0 | 4.0 | 4.0 |  | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
| Lane Util. Factor | 1.00 | 1.00 |  | 1.00 | 1.00 | 1.00 |  | 0.95 | 1.00 | 1.00 | 0.95 | 1.0 |
| Fit | 1.00 | 0.97 |  | 1.00 | 1.00 | 0.85 |  | 1.00 | 0.85 | 1.00 | 1.00 | 0.8 |
| Flt Protected | 0.95 | 1.00 |  | 0.95 | 1.00 | 1.00 |  | 1.00 | 1.00 | 0.95 | 1.00 | 1.0 |
| Satd. Flow (prot) | 1770 | 1807 |  | 1770 | 1863 | 1583 |  | 3524 | 1583 | 1770 | 3539 | 158 |
| Flt Permitted | 0.65 | 1.00 |  | 0.63 | 1.00 | 1.00 |  | 0.89 | 1.00 | 0.32 | 1.00 | 1.0 |
| Satd. Flow (perm) | 1217 | 1807 |  | 1173 | 1863 | 1583 |  | 3155 | 1583 | 594 | 3539 | 158 |
| Peak-hour factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.9 |
| Adj. Flow (vph) | 37 | 163 | 41 | 133 | 164 | 17 | 70 | 761 | 217 | 59 | 437 |  |
| RTOR Reduction (vph) | 0 | 21 | 0 | 0 | 0 | 13 | 0 | 0 | 101 | 0 | 0 |  |
| Lane Group Flow (vph) | 37 | 183 | 0 | 133 | 164 | 4 | 0 | 831 | 116 | 59 | 437 |  |
| Turn Type | Perm |  |  | Perm |  | Perm | Perm |  | Perm | Perm |  |  |


|  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Permitted Phases | 4 | 4 | 8 |  | 8 | 2 |  | 2 | 6 |  | 6 |
| Actuated Green, G (s) | 7.8 | 7.8 | 7.8 | 7.8 | 7.8 |  | 18.3 | 18.3 | 18.3 | 18.3 | 18.3 |


| Actuated Green, $\mathrm{G}(\mathrm{s})$ | 7.8 | 7.8 | 7.8 | 7.8 | 7.8 | 18.3 | 18.3 | 18.3 | 18.3 | 18.3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Effete | 7.8 | 7.8 | 7.8 | 7.8 | 7.8 | 18.3 | 18.3 | 183 | 183 | 183 |


| Effective Green, $\mathrm{g}(\mathrm{s})$ | 7.8 | 7.8 | 7.8 | 7.8 | 7.8 | 18.3 | 18.3 | 18.3 | 18.3 | 18.3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| Actuated $g / C$ Ratio | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.54 | 0.54 | 0.54 | 0.54 | 0.54 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Clearance Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |


| Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Lane Grp Cap (vph) | 278 | 413 | 268 | 426 | 362 | 1693 | 850 | 319 | 1899 | 850 | v/s Ratio Perm v/c Ratio

Uniform Delay, d1

| 0.13 | 0.44 |
| :--- | :--- |

c0.11

|  | 0.43 | 0.50 | 0.38 | 0.01 | 0.49 | 0.14 | 0.18 | 0.23 | 0.02 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Progression Factor | 10.5 | 11.3 | 11.4 | 11.1 | 10.2 | 5.0 | 4.0 | 4.1 | 4.2 | 3.7 |
|  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  | 1.0 | 1.00 | 10 |  |

 Delay (o) Level of Service Approach LOS

| Intersection Summary |  |  |  |
| :--- | ---: | :--- | ---: |
| HCM Average Control Delay | 6.6 | HCM Level of Service | A |
| HCM Volume to Capacity ratio | 0.49 | Sum of lost time (s) | 8.0 |
| Actuared CCcle Length (s) | 34.1 | 8 |  |
| Intersection Capacity Utilization | $62.6 \%$ | ICU Level of Service | B |
| Analysis Period (min) | 15 |  |  |

Analysis Period (min)
c Critical Lane Group

## SR-89 5/14/2007 2008 Existing Conditions <br> 6/15/2009



Critical Lane Group

HCM Signalized Intersection Capacity Analysis


Analysis Period (min)
c Critical Lane Group

SR-89 5/14/2007 2008 Existing Conditions
6/15/2009


HCM Signalized Intersection Capacity Analysis
94: I-15 NB Ramp \& Pleasant Grove Blvd
Timing Plan: PM Peak

c Critical Lane Group

## SR-89 5/14/2007 2008 Existing Conditions

6/15/2009
Synchro 7 - Repor
Page 11


Critical Lane Group


Analysis Period (min)
c Critical Lane Group

## SR-89 5/14/2007 2008 Existing Conditions <br> 6/15/2009

| HCM Unsignalized Intersection Capacity Analysis |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 | $\rightarrow$ | $\leftarrow$ | 4 |  | $\checkmark$ |  |  |  |  |
| Movement | EBL | EBT | WBT | WBR | SBL | SBR |  |  |  |  |
| Lane Configurations | \％ | ¢ヶ¢ | 个个 | F | ＊ |  |  |  |  |  |
| Volume（veh／h） | 55 | 700 | 666 | 360 | 253 | 46 |  |  |  |  |
| Sign Control |  | Free | Free |  | Stop |  |  |  |  |  |
| Grade |  | 0\％ | 0\％ |  | 0\％ |  |  |  |  |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |  |  |  |
| Hourly flow rate（vph） | 60 | 761 | 724 | 391 | 275 | 50 |  |  |  |  |
| Pedestrians |  |  |  |  |  |  |  |  |  |  |
| Lane Width（tt） |  |  |  |  |  |  |  |  |  |  |
| Walking Speed（ft／s） |  |  |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |  |  |
| Right turn flare（veh） |  |  |  |  |  |  |  |  |  |  |
| Median type |  | None | TWLTL |  |  |  |  |  |  |  |
| Median storage veh） |  |  | 2 |  |  |  |  |  |  |  |
| Upstream signal（ti） |  | 629 | 1179 |  |  |  |  |  |  |  |
| pX，platoon unblocked | 0.86 |  |  |  | 0.88 | 0.86 |  |  |  |  |
| vC, conflicting volume | 1115 |  |  |  | 1097 | 362 |  |  |  |  |
| $\mathrm{vC1}$ ，stage 1 conf vol |  |  |  |  | 724 |  |  |  |  |  |
| vC2，stage 2 conf vol |  |  |  |  | 373 |  |  |  |  |  |
| vCu，unblocked vol | 809 |  |  |  | 589 | 0 |  |  |  |  |
| tC ，single（s） | 4.1 |  |  |  | 6.8 | 6.9 |  |  |  |  |
| $\mathrm{tC}, 2$ stage（s） |  |  |  |  | 5.8 |  |  |  |  |  |
| tF（s） | 2.2 |  |  |  | 3.5 | 3.3 |  |  |  |  |
| p0 queue free \％ | 91 |  |  |  | 48 | 95 |  |  |  |  |
| cM capacity（veh／h） | 699 |  |  |  | 524 | 933 |  |  |  |  |
| Direction，Lane \＃ | EB 1 | EB 2 | EB 3 | EB 4 | WB 1 | WB 2 | WB 3 | SB 1 |  |  |
| Volume Total | 60 | 254 | 254 | 254 | 362 | 362 | 391 | 325 |  |  |
| Volume Left | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 275 |  |  |
| Volume Right | 0 | 0 | 0 | 0 | 0 | 0 | 391 | 50 |  |  |
| cSH | 699 | 1700 | 1700 | 1700 | 1700 | 1700 | 1700 | 562 |  |  |
| Volume to Capacity | 0.09 | 0.15 | 0.15 | 0.15 | 0.21 | 0.21 | 0.23 | 0.58 |  |  |
| Queue Length 95th（ft） | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 92 |  |  |
| Control Delay（s） | 10.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 19.8 |  |  |
| Lane LOS | B |  |  |  |  |  |  | C |  |  |
| Approach Delay（s） | 0.8 |  |  |  | 0.0 |  |  | 19.8 |  |  |
| Approach LOS |  |  |  |  |  |  |  | C |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 3.1 |  |  |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 48．6\％ |  | CU Level | of Service |  |  | A |  |
| Analysis Period（min） |  |  | 15 |  |  |  |  |  |  |  |

## SR－89 5／14／2007 2008 Existing Condition <br> 12／2009

HCM Unsignalized Intersection Capacity Analysis

|  | $\dagger$ | 4 | $\dagger$ | 1 |  | $\downarrow$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | WBL | WBR | NBT | NBR | SBL | SBT |  |
| Lane Configurations | \％ |  | $\uparrow$ | $\stackrel{7}{ }$ | ＊ | $\uparrow$ |  |
| Volume（veh／h） | 27 | 45 | 761 | 63 | 41 | 621 |  |
| Sign Control | Stop |  | Free |  |  | Free |  |
| Grade | 0\％ |  | 0\％ |  |  | 0\％ |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Hourly flow rate（vph） | 29 | 49 | 827 | 68 | 45 | 675 |  |
| Pedestrians |  |  |  |  |  |  |  |
| Lane Width（ft） |  |  |  |  |  |  |  |
| Walking Speed（fts） |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |
| Right tum flare（veh） |  |  |  |  |  |  |  |
| Median type |  |  | None |  |  | TWLTL |  |
| Median storage veh） |  |  |  |  |  | 2 |  |
| Upstream signal（ti） |  |  |  |  |  |  |  |
| pX，platoon unblocked |  |  |  |  |  |  |  |
| vC ，conflicting volume | 1591 | 827 |  |  | 896 |  |  |
| vC1，stage 1 conf vol | 827 |  |  |  |  |  |  |
| vC2，stage 2 conf vol | 764 |  |  |  |  |  |  |
| vCu，unblocked vol | 1591 | 827 |  |  | 896 |  |  |
| tC ，single（s） | 6.4 | 6.2 |  |  | 4.1 |  |  |
| $\mathrm{tC}, 2$ stage（s） | 5.4 |  |  |  |  |  |  |
| tF（s） | 3.5 | 3.3 |  |  | 2.2 |  |  |
| po queue free \％ | 91 | 87 |  |  | 94 |  |  |
| cM capacity（veh／h） | 317 | 371 |  |  | 758 |  |  |
| Direction，Lane \＃ | WB 1 | NB 1 | NB 2 | SB 1 | SB 2 |  |  |
| Volume Total | 78 | 827 | 68 | 45 | 675 |  |  |
| Volume Left | 29 | 0 | 0 | 45 | 0 |  |  |
| Volume Right | 49 | 0 | 68 | 0 | 0 |  |  |
| cSH | 349 | 1700 | 1700 | 758 | 1700 |  |  |
| Volume to Capacity | 0.22 | 0.49 | 0.04 | 0.06 | 0.40 |  |  |
| Queue Length 95th（ft） | 21 | 0 | 0 | 5 | 0 |  |  |
| Control Delay（s） | 18.3 | 0.0 | 0.0 | 10.0 | 0.0 |  |  |
| Lane LOS | C |  |  | B |  |  |  |
| Approach Delay（s） | 18.3 | 0.0 |  | 0.6 |  |  |  |
| Approach LOS | C |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |
| Average Delay |  |  | 1.1 |  |  |  |  |
| Intersection Capacity Utilization |  |  | 51．0\％ | ICU Level of Service |  |  | A |
| Analysis Period（min） |  |  | 15 |  |  |  |  |

[^12]| HCM Unsignalized Intersection Capacity Analysis 48: 1100 North \& 1300 West |  |  |  |  |  |  |  |  |  | Timing Plan: PM Peak |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\rangle$ | $\rightarrow$ |  | 7 |  | 4 | 4 | 4 | $>$ | $\checkmark$ | $\downarrow$ | $\downarrow$ |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | \% | $\dagger$ |  | \% | $\dagger$ |  |  | \$ |  |  | ${ }_{\text {¢ }}$ |  |
| Volume (veh/h) | 23 | 249 | 56 | 27 | 194 | 20 | 41 | 219 | 66 | 16 | 105 | 14 |
| Sign Control |  | Free |  |  | Free |  |  | Stop |  |  | Stop |  |
| Grade |  | 0\% |  |  | 0\% |  |  | 0\% |  |  | 0\% |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Hourly flow rate (vph) | 25 | 271 | 61 | 29 | 211 | 22 | 45 | 238 | 72 | 17 | 114 | 15 |
| Pedestrians |  |  |  |  |  |  |  |  |  |  |  |  |
| Lane Width (tt) |  |  |  |  |  |  |  |  |  |  |  |  |
| Waking Speed (ft/s) |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |  |  |  |  |
| Right turn flare (veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Median type |  | WLTL |  |  | TWLTL |  |  |  |  |  |  |  |
| Median storage veh) |  | 2 |  |  | 2 |  |  |  |  |  |  |  |
| Upstream signal (ft) |  |  |  |  |  |  |  |  |  |  |  |  |
| pX, platoon unblocked |  |  |  |  |  |  |  |  |  |  |  |  |
| VC, conflicting volume | 233 |  |  | 332 |  |  | 693 | 642 | 301 | 792 | 662 | 222 |
| vC1, stage 1 conf vol |  |  |  |  |  |  | 351 | 351 |  | 280 | 280 |  |
| $\mathrm{vC2}$, stage 2 conf vol |  |  |  |  |  |  | 342 | 291 |  | 511 | 382 |  |
| vCu, unblocked vol | 233 |  |  | 332 |  |  | 693 | 642 | 301 | 792 | 662 | 222 |
| tC, single (s) | 4.1 |  |  | 4.1 |  |  | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 |
| tC, 2 stage (s) |  |  |  |  |  |  | 6.1 | 5.5 |  | 6.1 | 5.5 |  |
| tF (s) | 2.2 |  |  | 2.2 |  |  | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 |
| p0 queue free \% | 98 |  |  | 98 |  |  | 90 | 55 | 90 | 93 | 78 | 98 |
| CM capacity (veh/h) | 1335 |  |  | 1228 |  |  | 455 | 529 | 739 | 260 | 514 | 818 |
| Direction, Lane \# | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | SB 1 |  |  |  |  |  |  |
| Volume Total | 25 | 332 | 29 | 233 | 354 | 147 |  |  |  |  |  |  |
| Volume Left | 25 | 0 | 29 | 0 | 45 | 17 |  |  |  |  |  |  |
| Volume Right | 0 | 61 | 0 | 22 | 72 | 15 |  |  |  |  |  |  |
| cSH | 1335 | 1700 | 1228 | 1700 | 549 | 477 |  |  |  |  |  |  |
| Volume to Capacity | 0.02 | 0.20 | 0.02 | 0.14 | 0.64 | 0.31 |  |  |  |  |  |  |
| Queue Length 95th (ft) | 1 | 0 | 2 | 0 | 115 | 32 |  |  |  |  |  |  |
| Control Delay (s) | 7.7 | 0.0 | 8.0 | 0.0 | 22.7 | 15.9 |  |  |  |  |  |  |
| Lane LOS | A |  | A |  | C | C |  |  |  |  |  |  |
| Approach Delay (s) | 0.5 |  | 0.9 |  | 22.7 | 15.9 |  |  |  |  |  |  |
| Approach LOS |  |  |  |  | C | C |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 9.6 |  |  |  |  |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 53.2\% |  | CU Level | f Service |  |  | A |  |  |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |  |  |  |  |



[^13]

## SR-89 5/14/2007 2008 Existing Condition

12/2009

HCM Unsignalized Intersection Capacity Analysis
79: Pleasant Grove Blvd. \& 220 South


[^14]| HCM Unsignalized Intersection Capacity Analysis 83: Pleasnt Grove Blvd. \& 1300 West |  |  |  |  |  |  |  |  |  | Timing Plan: PM Peak |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 | $\rightarrow$ |  | $\dagger$ | $\leftarrow$ |  | 4 | $\uparrow$ | $p$ | $\checkmark$ | $\downarrow$ | $\checkmark$ |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | \% | $\dagger$ |  | \% | f |  | \% | F |  |  | $\uparrow$ | 「 |
| Volume (veh/h) | 810 | 964 | 5 | 57 | 570 | 26 | 4 | 48 | 66 | 1 | 29 | 492 |
| Sign Control |  | Free |  |  | Free |  |  | Stop |  |  | Stop |  |
| Grade |  | 0\% |  |  | 0\% |  |  | 0\% |  |  | 0\% |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Hourly flow rate (vph) | 880 | 1048 | 5 | 62 | 620 | 28 | 4 | 52 | 72 | 1 | 32 | 535 |
| Pedestrians |  |  |  |  |  |  |  |  |  |  |  |  |
| Lane Width (tt) |  |  |  |  |  |  |  |  |  |  |  |  |
| Walking Speed (ft/s) |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |  |  |  |  |
| Right turn flare (veh) |  |  |  |  |  |  |  |  |  |  |  | 4 |
| Median type |  | None |  |  | None |  |  |  |  |  |  |  |
| Median storage veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Upstream signal (ft) |  |  |  |  |  |  |  |  |  |  |  |  |
| pX, platoon unblocked |  |  |  |  |  |  |  |  |  |  |  |  |
| vC , conflicting volume | 648 |  |  | 1053 |  |  | 3838 | 3583 | 1051 | 3664 | 3572 | 634 |
| vC1, stage 1 conf vol |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathrm{vC2}$, stage 2 conf vol |  |  |  |  |  |  |  |  |  |  |  |  |
| vCu , unblocked vol | 648 |  |  | 1053 |  |  | 3838 | 3583 | 1051 | 3664 | 3572 | 634 |
| tC , single (s) | 4.1 |  |  | 4.1 |  |  | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 |
| tC, 2 stage (s) |  |  |  |  |  |  |  |  |  |  |  |  |
| tF (s) | 2.2 |  |  | 2.2 |  |  | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 |
| p0 queue free \% | 6 |  |  | 91 |  |  | 0 | 0 | 74 | 0 | 0 | 0 |
| cM capacity (veh/h) | 938 |  |  | 661 |  |  | 0 | 0 | 276 | 0 | 0 | 479 |
| Direction, Lane \# | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | NB 2 | SB 1 |  |  |  |  |  |
| Volume Total | 880 | 1053 | 62 | 648 | 4 | 124 | 567 |  |  |  |  |  |
| Volume Left | 880 | 0 | 62 | 0 | 4 | 0 | 1 |  |  |  |  |  |
| Volume Right | 0 | 5 | 0 | 28 | 0 | 72 | 535 |  |  |  |  |  |
| cSH | 938 | 1700 | 661 | 1700 | 0 | 1 | 0 |  |  |  |  |  |
| Volume to Capacity | 0.94 | 0.62 | 0.09 | 0.38 | Err | 169.76 | 476.24 |  |  |  |  |  |
| Queue Length 95th (ft) | 373 | 0 | 8 | 0 | Er | Ert | Err |  |  |  |  |  |
| Control Delay (s) | 37.6 | 0.0 | 11.0 | 0.0 | Err | Err | Err |  |  |  |  |  |
| Lane LOS | E |  | B |  | F | F | F |  |  |  |  |  |
| Approach Delay (s) | 17.1 |  | 1.0 |  | Err |  | Err |  |  |  |  |  |
| Approach LOS |  |  |  |  | F |  | F |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| Average Delay |  |  | Err |  |  |  |  |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 93.0\% |  | U Level | Service |  |  | F |  |  |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |  |  |  |  |

HCM Unsignalized Intersection Capacity Analysis
97: 2600 North \& 1300 West


[^15]

| HCM Unsignalized Intersection Capacity Analysi 103: 1800 North \& 100 East |  |  |  |  |  |  |  |  |  | Timing Plan: PM Peak |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\stackrel{ }{ }$ |  | 7 | 7 | $\leftarrow$ |  | 4 | $\uparrow$ | $p$ | $\checkmark$ | $\downarrow$ | $\downarrow$ |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | ¢ |  |  | A |  | 7 | A |  |  | ${ }_{4}$ |  |
| Volume (veh/h) | 12 | 3 | 56 | 11 | 1 | 8 | 70 | 595 | 10 | 10 | 377 | 13 |
| Sign Control |  | Stop |  |  | Stop |  |  | Free |  |  | Free |  |
| Grade |  | 0\% |  |  | 0\% |  |  | 0\% |  |  | 0\% |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Hourly flow rate (vph) | 13 | 3 | 61 | 12 | 1 | 9 | 76 | 647 | 11 | 11 | 410 | 14 |
| Pedestrians |  |  |  |  |  |  |  |  |  |  |  |  |
| Lane Width (tt) |  |  |  |  |  |  |  |  |  |  |  |  |
| Walking Speed (ft/s) |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |  |  |  |  |
| Right turn flare (veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Median type |  |  |  |  |  |  |  | TWLTL |  |  | TWLTL |  |
| Median storage veh) |  |  |  |  |  |  |  | 2 |  |  | 2 |  |
| Upstream signal (tt) |  |  |  |  |  |  |  |  |  |  |  |  |
| pX , platoon unblocked |  |  |  |  |  |  |  |  |  |  |  |  |
| vC , conflicting volume | 1247 | 1248 | 417 | 1305 | 1250 | 652 | 424 |  |  | 658 |  |  |
| vC1, stage 1 conf vol | 439 | 439 |  | 804 | 804 |  |  |  |  |  |  |  |
| vC2, stage 2 conf vol | 808 | 810 |  | 501 | 446 |  |  |  |  |  |  |  |
| vCu, unblocked vol | 1247 | 1248 | 417 | 1305 | 1250 | 652 | 424 |  |  | 658 |  |  |
| tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 |  |  | 4.1 |  |  |
| tC, 2 stage (s) | 6.1 | 5.5 |  | 6.1 | 5.5 |  |  |  |  |  |  |  |
| tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 |  |  | 2.2 |  |  |
| p0 queue free \% | 96 | 99 | 90 | 96 | 100 | 98 | 93 |  |  | 99 |  |  |
| cM capacity (veh/h) | 302 | 322 | 636 | 284 | 320 | 468 | 1135 |  |  | 930 |  |  |
| Direction, Lane \# | EB 1 | WB 1 | NB 1 | NB 2 | SB 1 |  |  |  |  |  |  |  |
| Volume Total | 77 | 22 | 76 | 658 | 435 |  |  |  |  |  |  |  |
| Volume Left | 13 | 12 | 76 | 0 | 11 |  |  |  |  |  |  |  |
| Volume Right | 61 | 9 | 0 | 11 | 14 |  |  |  |  |  |  |  |
| cSH | 518 | 339 | 1135 | 1700 | 930 |  |  |  |  |  |  |  |
| Volume to Capacity | 0.15 | 0.06 | 0.07 | 0.39 | 0.01 |  |  |  |  |  |  |  |
| Queue Length 95th (tt) | 13 | 5 | 5 | 0 | 1 |  |  |  |  |  |  |  |
| Control Delay (s) | 13.2 | 16.3 | 8.4 | 0.0 | 0.4 |  |  |  |  |  |  |  |
| Lane LOS | B | C | A |  | A |  |  |  |  |  |  |  |
| Approach Delay (s) | 13.2 | 16.3 | 0.9 |  | 0.4 |  |  |  |  |  |  |  |
| Approach LOS | B | C |  |  |  |  |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 1.7 |  |  |  |  |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 53.3\% |  | CULevel | f Service |  |  | A |  |  |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |  |  |  |  |

[^16]| HCM Unsignalized Intersection Capacity Analysis <br> 105: 2600 North \& Canyon Road <br> Timing Plan: PM Peak |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 |  |  | 5 | $\longleftarrow$ |  | $\rightarrow$ | , | 4 | 4 | * | ¢ |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | SEL | SET | SER | NWL | NWT | NWR |
| Lane Configurations |  | ¢ |  |  | ¢ |  |  | $\uparrow$ |  | 7 | F |  |
| Volume (veh/h) | 15 | 0 | 108 | 0 | 0 | 0 | 0 | 457 | 61 | 80 | 149 | 0 |
| Sign Control |  | Stop |  |  | Stop |  |  | Free |  |  | Free |  |
| Grade |  | 0\% |  |  | 0\% |  |  | 0\% |  |  | 0\% |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Hourly flow rate (vph) | 16 | 0 | 117 | 0 | 0 | 0 | 0 | 497 | 66 | 87 | 162 | 0 |
| Pedestrians |  |  |  |  |  |  |  |  |  |  |  |  |
| Lane Width (tt) |  |  |  |  |  |  |  |  |  |  |  |  |
| Walking Speed (ft/s) |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |  |  |  |  |
| Right turn flare (veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Median type |  |  |  |  |  |  |  | None |  |  | None |  |
| Median storage veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Upstream signal (ft) |  |  |  |  |  |  |  |  |  |  |  |  |
| pX, platoon unblocked |  |  |  |  |  |  |  |  |  |  |  |  |
| vC , conflicting volume | 866 | 866 | 530 | 983 | 899 | 162 | 162 |  |  | 563 |  |  |
| vC1, stage 1 conf vol |  |  |  |  |  |  |  |  |  |  |  |  |
| vC2, stage 2 conf vol |  |  |  |  |  |  |  |  |  |  |  |  |
| vCu, unblocked vol | 866 | 866 | 530 | 983 | 899 | 162 | 162 |  |  | 563 |  |  |
| tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 |  |  | 4.1 |  |  |
| tC, 2 stage (s) |  |  |  |  |  |  |  |  |  |  |  |  |
| tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 |  |  | 2.2 |  |  |
| p0 queue free \% | 94 | 100 | 79 | 100 | 100 | 100 | 100 |  |  | 91 |  |  |
| cM capacity (veh/h) | 256 | 266 | 549 | 167 | 255 | 883 | 1417 |  |  | 1008 |  |  |
| Direction, Lane \# | EB 1 | WB 1 | SE 1 | NW 1 | NW 2 |  |  |  |  |  |  |  |
| Volume Total | 134 | 0 | 563 | 87 | 162 |  |  |  |  |  |  |  |
| Volume Left | 16 | 0 | 0 | 87 | 0 |  |  |  |  |  |  |  |
| Volume Right | 117 | 0 | 66 | 0 | 0 |  |  |  |  |  |  |  |
| cSH | 482 | 1700 | 1417 | 1008 | 1700 |  |  |  |  |  |  |  |
| Volume to Capacity | 0.28 | 0.00 | 0.00 | 0.09 | 0.10 |  |  |  |  |  |  |  |
| Queue Length 95th (ft) | 28 | 0 | 0 | 7 | 0 |  |  |  |  |  |  |  |
| Control Delay (s) | 15.3 | 0.0 | 0.0 | 8.9 | 0.0 |  |  |  |  |  |  |  |
| Lane LOS | C | A |  | A |  |  |  |  |  |  |  |  |
| Approach Delay (s) | 15.3 | 0.0 | 0.0 | 3.1 |  |  |  |  |  |  |  |  |
| Approach LOS | C | A |  |  |  |  |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 3.0 |  |  |  |  |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 53.1\% |  | Level | Service |  |  | A |  |  |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |  |  |  |  |

HCM Unsignalized Intersection Capacity Analysis

| 106: 2600 North \& 900 West |  |  |  |  |  |  |  | Timing Plan: PM Peak |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\dagger$ |  | $\leftarrow$ | 4 | $\checkmark$ | $\downarrow$ |  |  |
| Movement | EBL | EBT | WBT | WBR | SBL | SBR |  |  |
| Lane Configurations |  | $\uparrow$ | $\stackrel{1}{5}$ |  | M |  |  |  |
| Volume (veh/h) | 52 | 142 | 116 | 57 | 33 | 26 |  |  |
| Sign Control |  | Free | Free |  | Stop |  |  |  |
| Grade |  | 0\% | 0\% |  | 0\% |  |  |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |  |
| Hourly flow rate (vph) | 57 | 154 | 126 | 62 | 36 | 28 |  |  |
| Pedestrians |  |  |  |  |  |  |  |  |
| Lane Width (ft) |  |  |  |  |  |  |  |  |
| Walking Speed (fts) |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |
| Right turn flare (veh) |  |  |  |  |  |  |  |  |
| Median type |  | None | None |  |  |  |  |  |
| Median storage veh) |  |  |  |  |  |  |  |  |
| Upstream signal (ft) |  |  |  |  |  |  |  |  |
| pX , platoon unblocked |  |  |  |  |  |  |  |  |
| vC , conflicting volume | 188 |  |  |  | 424 | 157 |  |  |
| vC1, stage 1 conf vol |  |  |  |  |  |  |  |  |
| vC2, stage 2 conf vol |  |  |  |  |  |  |  |  |
| vCu, unblocked vol | 188 |  |  |  | 424 | 157 |  |  |
| t , single (s) | 4.1 |  |  |  | 6.4 | 6.2 |  |  |
| tC, 2 stage (s) |  |  |  |  |  |  |  |  |
| tF (s) | 2.2 |  |  |  | 3.5 | 3.3 |  |  |
| p0 queue free \% | 96 |  |  |  | 94 | 97 |  |  |
| cM capacity (veh/h) | 1386 |  |  |  | 563 | 888 |  |  |
| Direction, Lane\# | EB 1 | WB 1 | SB 1 |  |  |  |  |  |
| Volume Total | 211 | 188 | 64 |  |  |  |  |  |
| Volume Left | 57 | 0 | 36 |  |  |  |  |  |
| Volume Right | 0 | 62 | 28 |  |  |  |  |  |
| cSH | 1386 | 1700 | 671 |  |  |  |  |  |
| Volume to Capacity | 0.04 | 0.11 | 0.10 |  |  |  |  |  |
| Queue Length 95th (ft) | 3 | 0 | 8 |  |  |  |  |  |
| Control Delay (s) | 2.3 | 0.0 | 10.9 |  |  |  |  |  |
| Lane LOS | A |  | B |  |  |  |  |  |
| Approach Delay (s) | 2.3 | 0.0 | 10.9 |  |  |  |  |  |
| Approach LOS |  |  | B |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 2.6 |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 33.3\% |  | CU Level | Service | A |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |

[^17]

HCM Unsignalized Intersection Capacity Analysis
114: 2600 North \& 600 West


[^18]

HCM Unsignalized Intersection Capacity Analysis

| 123: 1100 North \& 60 | 0 W |  |  |  |  |  |  |  |  | Timing Plan: PM Peak |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\Rightarrow$ |  | 7 | $\checkmark$ | $\leftarrow$ |  | 4 | 4 | $>$ | $\checkmark$ | $\downarrow$ | $\downarrow$ |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | $\dagger$ |  | ${ }^{7}$ | $\dagger$ |  |  | \$ |  |  | ${ }_{\text {¢ }}$ |  |
| Volume (veh/h) | 30 | 262 | 23 | 39 | 186 | 19 | 31 | 140 | 96 | 13 | 85 | 23 |
| Sign Control |  | Free |  |  | Free |  |  | Stop |  |  | Stop |  |
| Grade |  | 0\% |  |  | 0\% |  |  | 0\% |  |  | 0\% |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Hourly flow rate (vph) | 33 | 285 | 25 | 42 | 202 | 21 | 34 | 152 | 104 | 14 | 92 | 25 |
| Pedestrians |  |  |  |  |  |  |  |  |  |  |  |  |
| Lane Width (ft) |  |  |  |  |  |  |  |  |  |  |  |  |
| Walking Speed (fts) |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |  |  |  |  |
| Right tum flare (veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Median type |  | TWLTL |  |  | TWLTL |  |  |  |  |  |  |  |
| Median storage veh) |  | 2 |  |  | 2 |  |  |  |  |  |  |  |
| Upstream signal (ti) |  |  |  |  |  |  |  |  |  |  |  |  |
| pX, platoon unblocked |  |  |  |  |  |  |  |  |  |  |  |  |
| vC , conflicting volume | 223 |  |  | 310 |  |  | 721 | 670 | 297 | 840 | 672 | 212 |
| vC1, stage 1 conf vol |  |  |  |  |  |  | 362 | 362 |  | 297 | 297 |  |
| vC2, stage 2 conf vol |  |  |  |  |  |  | 358 | 308 |  | 543 | 375 |  |
| vCu, unblocked vol | 223 |  |  | 310 |  |  | 721 | 670 | 297 | 840 | 672 | 212 |
| tC, single (s) | 4.1 |  |  | 4.1 |  |  | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 |
| tC, 2 stage (s) |  |  |  |  |  |  | 6.1 | 5.5 |  | 6.1 | 5.5 |  |
| tF (s) | 2.2 |  |  | 2.2 |  |  | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 |
| p0 queue free \% | 98 |  |  | 97 |  |  | 92 | 70 | 86 | 95 | 82 | 97 |
| cM capacity (veh/h) | 1346 |  |  | 1251 |  |  | 444 | 511 | 742 | 277 | 501 | 828 |
| Direction, Lane \# | EB 1 | WB 1 | WB 2 | NB 1 | SB 1 |  |  |  |  |  |  |  |
| Volume Total | 342 | 42 | 223 | 290 | 132 |  |  |  |  |  |  |  |
| Volume Left | 33 | 42 | 0 | 34 | 14 |  |  |  |  |  |  |  |
| Volume Right | 25 | 0 | 21 | 104 | 25 |  |  |  |  |  |  |  |
| cSH | 1346 | 1251 | 1700 | 565 | 495 |  |  |  |  |  |  |  |
| Volume to Capacity | 0.02 | 0.03 | 0.13 | 0.51 | 0.27 |  |  |  |  |  |  |  |
| Queue Length 95th (ft) | 2 | 3 | 0 | 73 | 27 |  |  |  |  |  |  |  |
| Control Delay (s) | 0.9 | 8.0 | 0.0 | 17.9 | 14.9 |  |  |  |  |  |  |  |
| Lane LOS | A | A |  | C | B |  |  |  |  |  |  |  |
| Approach Delay (s) | 0.9 | 1.3 |  | 17.9 | 14.9 |  |  |  |  |  |  |  |
| Approach LOS |  |  |  | C | B |  |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 7.6 |  |  |  |  |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 58.1\% |  | CU Level | f Service |  |  | B |  |  |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |  |  |  |  |

## SR-89 5/14/2007 2008 Existing Conditions <br> 6/12/2009

| HCM Unsignalized Intersection Capacity Analysis 124: 800 North \& 600 West |  |  |  |  |  |  |  |  |  | Timing Plan: PM Peak |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\rangle$ |  |  | $\checkmark$ | $\leftarrow$ | 4 | 4 | $\uparrow$ | $p$ | $\checkmark$ | $\downarrow$ | $\downarrow$ |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | ¢ |  |  | \$ |  |  | ¢ |  |  | ${ }_{\text {¢ }}$ |  |
| Volume (veh/h) | 7 | 9 | 18 | 23 | 9 | 7 | 25 | 261 | 20 | 2 | 173 | 7 |
| Sign Control |  | Stop |  |  | Stop |  |  | Free |  |  | Free |  |
| Grade |  | 0\% |  |  | 0\% |  |  | 0\% |  |  | 0\% |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Hourly flow rate (vph) | 8 | 10 | 20 | 25 | 10 | 8 | 27 | 284 | 22 | 2 | 188 | 8 |
| Pedestrians |  |  |  |  |  |  |  |  |  |  |  |  |
| Lane Width (tt) |  |  |  |  |  |  |  |  |  |  |  |  |
| Walking Speed (ft/s) |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |  |  |  |  |
| Right turn flare (veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Median type |  |  |  |  |  |  |  | None |  |  | None |  |
| Median storage veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Upstream signal (ft) |  |  |  |  |  |  |  |  |  |  |  |  |
| pX , platoon unblocked |  |  |  |  |  |  |  |  |  |  |  |  |
| vC , conflicting volume | 558 | 556 | 192 | 570 | 549 | 295 | 196 |  |  | 305 |  |  |
| vC1, stage 1 conf vol |  |  |  |  |  |  |  |  |  |  |  |  |
| vC2, stage 2 conf vol |  |  |  |  |  |  |  |  |  |  |  |  |
| vCu, unblocked vol | 558 | 556 | 192 | 570 | 549 | 295 | 196 |  |  | 305 |  |  |
| tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 |  |  | 4.1 |  |  |
| tC, 2 stage (s) |  |  |  |  |  |  |  |  |  |  |  |  |
| tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 |  |  | 2.2 |  |  |
| p0 queue free \% | 98 | 98 | 98 | 94 | 98 | 99 | 98 |  |  | 100 |  |  |
| cM capacity (veh/h) | 422 | 430 | 850 | 409 | 434 | 745 | 1377 |  |  | 1255 |  |  |
| Direction, Lane \# | EB 1 | WB 1 | NB 1 | SB 1 |  |  |  |  |  |  |  |  |
| Volume Total | 37 | 42 | 333 | 198 |  |  |  |  |  |  |  |  |
| Volume Left | 8 | 25 | 27 | 2 |  |  |  |  |  |  |  |  |
| Volume Right | 20 | 8 | 22 | 8 |  |  |  |  |  |  |  |  |
| cSH | 579 | 451 | 1377 | 1255 |  |  |  |  |  |  |  |  |
| Volume to Capacity | 0.06 | 0.09 | 0.02 | 0.00 |  |  |  |  |  |  |  |  |
| Queue Length 95th (tt) | 5 | 8 | 2 | 0 |  |  |  |  |  |  |  |  |
| Control Delay (s) | 11.6 | 13.8 | 0.8 | 0.1 |  |  |  |  |  |  |  |  |
| Lane LOS | B | B | A | A |  |  |  |  |  |  |  |  |
| Approach Delay (s) | 11.6 | 13.8 | 0.8 | 0.1 |  |  |  |  |  |  |  |  |
| Approach LOS | B | B |  |  |  |  |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 2.1 |  |  |  |  |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 41.2\% |  | Leve | Service |  |  | A |  |  |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |  |  |  |  |

HCM Unsignalized Intersection Capacity Analysis

| 127: 1100 North \& 30 | 0 Ea |  |  |  |  |  |  |  |  | Timing Plan: PM Peak |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\Rightarrow$ |  |  | $\downarrow$ |  |  | 4 | 4 | $>$ | $\checkmark$ | $\downarrow$ | $\downarrow$ |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | \% | $\dagger$ |  | \% | F |  |  | \$ |  |  | \$ |  |
| Volume (veh/h) | 14 | 199 | 19 | 35 | 100 | 7 | 35 | 25 | 68 | 2 | 10 | 13 |
| Sign Control |  | Free |  |  | Free |  |  | Stop |  |  | Stop |  |
| Grade |  | 0\% |  |  | 0\% |  |  | 0\% |  |  | 0\% |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Hourly flow rate (vph) | 15 | 216 | 21 | 38 | 109 | 8 | 38 | 27 | 74 | 2 | 11 | 14 |
| Pedestrians |  |  |  |  |  |  |  |  |  |  |  |  |
| Lane Width (ft) |  |  |  |  |  |  |  |  |  |  |  |  |
| Walking Speed (fts) |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |  |  |  |  |
| Right tum flare (veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Median type |  | WLTL |  |  | TWLTL |  |  |  |  |  |  |  |
| Median storage veh) |  | 2 |  |  | 2 |  |  |  |  |  |  |  |
| Upstream signal (ti) |  | 1157 |  |  |  |  |  |  |  |  |  |  |
| pX, platoon unblocked |  |  |  |  |  |  |  |  |  |  |  |  |
| vC , conflicting volume | 116 |  |  | 237 |  |  | 461 | 449 | 227 | 523 | 456 | 112 |
| vC1, stage 1 conf vol |  |  |  |  |  |  | 257 | 257 |  | 189 | 189 |  |
| vC2, stage 2 conf vol |  |  |  |  |  |  | 204 | 192 |  | 334 | 267 |  |
| vCu, unblocked vol | 116 |  |  | 237 |  |  | 461 | 449 | 227 | 523 | 456 | 112 |
| tC , single (s) | 4.1 |  |  | 4.1 |  |  | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 |
| $\mathrm{tC}, 2$ stage (s) |  |  |  |  |  |  | 6.1 | 5.5 |  | 6.1 | 5.5 |  |
| tF (s) | 2.2 |  |  | 2.2 |  |  | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 |
| p0 queue free \% | 99 |  |  | 97 |  |  | 94 | 96 | 91 | 100 | 98 | 98 |
| cM capacity (veh/h) | 1472 |  |  | 1330 |  |  | 637 | 611 | 813 | 521 | 594 | 940 |
| Direction, Lane \# | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | SB 1 |  |  |  |  |  |  |
| Volume Total | 15 | 237 | 38 | 116 | 139 | 27 |  |  |  |  |  |  |
| Volume Left | 15 | 0 | 38 | 0 | 38 | 2 |  |  |  |  |  |  |
| Volume Right | 0 | 21 | 0 | 8 | 74 | 14 |  |  |  |  |  |  |
| cSH | 1472 | 1700 | 1330 | 1700 | 713 | 725 |  |  |  |  |  |  |
| Volume to Capacity | 0.01 | 0.14 | 0.03 | 0.07 | 0.20 | 0.04 |  |  |  |  |  |  |
| Queue Length 95th (ft) | 1 | 0 | 2 | 0 | 18 | 3 |  |  |  |  |  |  |
| Control Delay (s) | 7.5 | 0.0 | 7.8 | 0.0 | 11.3 | 10.2 |  |  |  |  |  |  |
| Lane LOS | A |  | A |  | B | B |  |  |  |  |  |  |
| Approach Delay (s) | 0.5 |  | 1.9 |  | 11.3 | 10.2 |  |  |  |  |  |  |
| Approach LOS |  |  |  |  | B | B |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 3.9 |  |  |  |  |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 39.0\% |  | CU Level | of Service |  |  | A |  |  |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |  |  |  |  |

[^19]| HCM Unsignalized Intersection Capacity Analysis <br> 130: 1100 North \& 500 Ear |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | * |  |  | $\checkmark$ |  | 4 | 4 | 4 | $p$ | $\checkmark$ | $\downarrow$ | $\checkmark$ |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | ¢ |  |  | ¢ |  |  | \$ |  |  | \$ |  |
| Volume (veh/h) | 8 | 193 | 29 | 3 | 103 | 1 | 20 | 14 | 8 | 1 | 10 | 7 |
| Sign Control |  | Free |  |  | Free |  |  | Stop |  |  | Stop |  |
| Grade |  | 0\% |  |  | 0\% |  |  | 0\% |  |  | 0\% |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Hourly flow rate (vph) | 9 | 210 | 32 | 3 | 112 | 1 | 22 | 15 | 9 | 1 | 11 | 8 |
| Pedestrians |  |  |  |  |  |  |  |  |  |  |  |  |
| Lane Width (tt) |  |  |  |  |  |  |  |  |  |  |  |  |
| Walking Speed (ft/s) |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |  |  |  |  |
| Right turn flare (veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Median type |  | TWLTL |  |  | TWLTL |  |  |  |  |  |  |  |
| Median storage veh) |  | 2 |  |  | 2 |  |  |  |  |  |  |  |
| Upstream signal (ft) |  |  |  |  |  |  |  |  |  |  |  |  |
| pX, platoon unblocked |  |  |  |  |  |  |  |  |  |  |  |  |
| vC , conflicting volume | 113 |  |  | 241 |  |  | 375 | 362 | 226 | 378 | 378 | 112 |
| vC1, stage 1 conf vol |  |  |  |  |  |  | 243 | 243 |  | 119 | 119 |  |
| vC2, stage 2 conf vol |  |  |  |  |  |  | 132 | 120 |  | 259 | 259 |  |
| vCu, unblocked vol | 113 |  |  | 241 |  |  | 375 | 362 | 226 | 378 | 378 | 112 |
| tC, single (s) | 4.1 |  |  | 4.1 |  |  | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 |
| tC, 2 stage (s) |  |  |  |  |  |  | 6.1 | 5.5 |  | 6.1 | 5.5 |  |
| tF (s) | 2.2 |  |  | 2.2 |  |  | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 |
| p0 queue free \% | 99 |  |  | 100 |  |  | 97 | 98 | 99 | 100 | 98 | 99 |
| cM capacity (veh/h) | 1476 |  |  | 1325 |  |  | 698 | 658 | 814 | 677 | 648 | 940 |
| Direction, Lane \# | EB 1 | WB 1 | NB 1 | SB 1 |  |  |  |  |  |  |  |  |
| Volume Total | 250 | 116 | 46 | 20 |  |  |  |  |  |  |  |  |
| Volume Left | 9 | 3 | 22 | 1 |  |  |  |  |  |  |  |  |
| Volume Right | 32 | 1 | 9 | 8 |  |  |  |  |  |  |  |  |
| cSH | 1476 | 1325 | 702 | 739 |  |  |  |  |  |  |  |  |
| Volume to Capacity | 0.01 | 0.00 | 0.06 | 0.03 |  |  |  |  |  |  |  |  |
| Queue Length 95th (ft) | 0 | 0 | 5 | 2 |  |  |  |  |  |  |  |  |
| Control Delay (s) | 0.3 | 0.2 | 10.5 | 10.0 |  |  |  |  |  |  |  |  |
| Lane LOS | A | A | B | B |  |  |  |  |  |  |  |  |
| Approach Delay (s) | 0.3 | 0.2 | 10.5 | 10.0 |  |  |  |  |  |  |  |  |
| Approach LOS |  |  | B | B |  |  |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 1.8 |  |  |  |  |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 31.2\% |  | Leve | Service |  |  | A |  |  |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |  |  |  |  |

HCM Unsignalized Intersection Capacity Analysis


## SR-89 5/14/2007 2008 Existing Conditions <br> 6/12/2009

HCM Unsignalized Intersection Capacity Analysis
139: 500 North \& 700 East
Timing Plan: PM Peak


## SR-89 5/14/2007 2008 Existing Condition <br> 12/2009

HCM Unsignalized Intersection Capacity Analysis
145: 200 South \& Locust Ave

| Movement | EBT | EBR | WBL | WBT | NWL | NWR |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | $\dagger$ |  |  | $\uparrow$ | \% |  |  |
| Volume (veh/h) | 352 | 125 | 40 | 194 | 86 | 72 |  |
| Sign Control | Free |  |  | Free | Stop |  |  |
| Grade | 0\% |  |  | 0\% | 0\% |  |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Hourly flow rate (vph) | 383 | 136 | 43 | 211 | 93 | 78 |  |
| Pedestrians |  |  |  |  |  |  |  |
| Lane Width (tt) |  |  |  |  |  |  |  |
| Walking Speed (fts) |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |
| Right turn flare (veh) |  |  |  |  |  |  |  |
| Median type | None |  |  | None |  |  |  |
| Median storage veh) |  |  |  |  |  |  |  |
| Upstream signal (ft) |  |  |  |  |  |  |  |
| pX, platoon unblocked |  |  |  |  |  |  |  |
| vC , conflicting volume |  |  | 518 |  | 748 | 451 |  |
| $\mathrm{vC1}$, stage 1 conf vol |  |  |  |  |  |  |  |
| $\mathrm{vC2}$, stage 2 conf vol |  |  |  |  |  |  |  |
| vCu, unblocked vol |  |  | 518 |  | 748 | 451 |  |
| tC, single (s) |  |  | 4.1 |  | 6.4 | 6.2 |  |
| tc, 2 stage (s) |  |  |  |  |  |  |  |
| tF (s) |  |  | 2.2 |  | 3.5 | 3.3 |  |
| p0 queue free \% |  |  | 96 |  | 74 | 87 |  |
| cM capacity (veh/h) |  |  | 1048 |  | 364 | 609 |  |
| Direction, Lane \# | EB 1 | WB 1 | NW 1 |  |  |  |  |
| Volume Total | 518 | 254 | 172 |  |  |  |  |
| Volume Left | 0 | 43 | 93 |  |  |  |  |
| Volume Right | 136 | 0 | 78 |  |  |  |  |
| cSH | 1700 | 1048 | 446 |  |  |  |  |
| Volume to Capacity | 0.30 | 0.04 | 0.39 |  |  |  |  |
| Queue Length 95th (ft) | 0 | 3 | 45 |  |  |  |  |
| Control Delay (s) | 0.0 | 1.8 | 18.1 |  |  |  |  |
| Lane LOS |  | A | c |  |  |  |  |
| Approach Delay (s) | 0.0 | 1.8 | 18.1 |  |  |  |  |
| Approach LOS |  |  | C |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |
| Average Delay |  |  | 3.8 |  |  |  |  |
| Intersection Capacity Utilization |  |  | 57.7\% |  | CU Level | Service | B |
| Analysis Period (min) |  |  | 15 |  |  |  |  |

[^20]| HCM Unsignalized Intersection Capacity Analysis 146: Center Street \& 700 East |  |  |  |  |  |  |  |  |  | Timing Plan: PM Peak |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\rangle$ | $\rightarrow$ | $\rangle$ | $\checkmark$ | $\leftarrow$ | 4 | 4 | 4 | $p$ | $\checkmark$ | $\downarrow$ | $\downarrow$ |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | ¢ |  |  | ¢ |  |  | \$ |  |  | ¢ |  |
| Volume (veh/h) | 19 | 177 | 9 | 30 | 63 | 5 | 9 | 87 | 47 | 9 | 40 | 23 |
| Sign Control |  | Free |  |  | Free |  |  | Stop |  |  | Stop |  |
| Grade |  | 0\% |  |  | 0\% |  |  | 0\% |  |  | 0\% |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Hourly flow rate (vph) | 21 | 192 | 10 | 33 | 68 | 5 | 10 | 95 | 51 | 10 | 43 | 25 |
| Pedestrians |  |  |  |  |  |  |  |  |  |  |  |  |
| Lane Width (tt) |  |  |  |  |  |  |  |  |  |  |  |  |
| Walking Speed (ft/s) |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |  |  |  |  |
| Right turn flare (veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Median type |  | None |  |  | None |  |  |  |  |  |  |  |
| Median storage veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Upstream signal (ft) |  |  |  |  |  |  |  |  |  |  |  |  |
| pX, platoon unblocked |  |  |  |  |  |  |  |  |  |  |  |  |
| vC , conflicting volume | 74 |  |  | 202 |  |  | 422 | 378 | 197 | 473 | 380 | 71 |
| $\mathrm{vC1}$, stage 1 conf vol |  |  |  |  |  |  |  |  |  |  |  |  |
| vC2, stage 2 conf vol |  |  |  |  |  |  |  |  |  |  |  |  |
| vCu, unblocked vol | 74 |  |  | 202 |  |  | 422 | 378 | 197 | 473 | 380 | 71 |
| tC , single (s) | 4.1 |  |  | 4.1 |  |  | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 |
| tC, 2 stage (s) |  |  |  |  |  |  |  |  |  |  |  |  |
| tF (s) | 2.2 |  |  | 2.2 |  |  | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 |
| p0 queue free \% | 99 |  |  | 98 |  |  | 98 | 82 | 94 | 98 | 92 | 97 |
| cM capacity (veh/h) | 1526 |  |  | 1370 |  |  | 482 | 534 | 844 | 396 | 532 | 991 |
| Direction, Lane \# | EB 1 | WB 1 | NB 1 | SB 1 |  |  |  |  |  |  |  |  |
| Volume Total | 223 | 107 | 155 | 78 |  |  |  |  |  |  |  |  |
| Volume Left | 21 | 33 | 10 | 10 |  |  |  |  |  |  |  |  |
| Volume Right | 10 | 5 | 51 | 25 |  |  |  |  |  |  |  |  |
| cSH | 1526 | 1370 | 602 | 594 |  |  |  |  |  |  |  |  |
| Volume to Capacity | 0.01 | 0.02 | 0.26 | 0.13 |  |  |  |  |  |  |  |  |
| Queue Length 95th (ft) | 1 | 2 | 26 | 11 |  |  |  |  |  |  |  |  |
| Control Delay (s) | 0.8 | 2.5 | 13.0 | 12.0 |  |  |  |  |  |  |  |  |
| Lane LOS | A | A | B | B |  |  |  |  |  |  |  |  |
| Approach Delay (s) | 0.8 | 2.5 | 13.0 | 12.0 |  |  |  |  |  |  |  |  |
| Approach LOS |  |  | B | B |  |  |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 6.0 |  |  |  |  |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 28.0\% |  | CU Level | f Service |  |  | A |  |  |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |  |  |  |  |

HCM Unsignalized Intersection Capacity Analysis


[^21]| HCM Unsignalized Intersection Capacity Analysis 152: 200 South \& 1300 East |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\rangle$ | $\rightarrow$ | 7 | $\checkmark$ |  | 4 | 4 | 4 | $p$ | $\downarrow$ | $\downarrow$ | $\checkmark$ |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | ¢ |  |  | $\uparrow$ |  |  | \$ |  |  | \$ |  |
| Volume (veh/h) | 48 | 55 | 23 | 2 | 47 | 4 | 16 | 23 | 4 | 12 | 14 | 14 |
| Sign Control |  | Free |  |  | Free |  |  | Stop |  |  | Stop |  |
| Grade |  | 0\% |  |  | 0\% |  |  | 0\% |  |  | 0\% |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Hourly flow rate (vph) | 52 | 60 | 25 | 2 | 51 | 4 | 17 | 25 | 4 | 13 | 15 | 15 |
| Pedestrians |  |  |  |  |  |  |  |  |  |  |  |  |
| Lane Width (tt) |  |  |  |  |  |  |  |  |  |  |  |  |
| Walking Speed (ft/s) |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |  |  |  |  |
| Right turn flare (veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Median type |  | None |  |  | None |  |  |  |  |  |  |  |
| Median storage veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Upstream signal (ft) |  |  |  |  |  |  |  |  |  |  |  |  |
| pX, platoon unblocked |  |  |  |  |  |  |  |  |  |  |  |  |
| vC , conflicting volume | 55 |  |  | 85 |  |  | 257 | 236 | 72 | 251 | 247 | 53 |
| vC1, stage 1 conf vol |  |  |  |  |  |  |  |  |  |  |  |  |
| vC2, stage 2 conf vol |  |  |  |  |  |  |  |  |  |  |  |  |
| vCu, unblocked vol | 55 |  |  | 85 |  |  | 257 | 236 | 72 | 251 | 247 | 53 |
| tC, single (s) | 4.1 |  |  | 4.1 |  |  | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 |
| tC, 2 stage (s) |  |  |  |  |  |  |  |  |  |  |  |  |
| tF (s) | 2.2 |  |  | 2.2 |  |  | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 |
| p0 queue free \% | 97 |  |  | 100 |  |  | 97 | 96 | 100 | 98 | 98 | 98 |
| cM capacity (veh/h) | 1549 |  |  | 1512 |  |  | 655 | 641 | 990 | 660 | 633 | 1014 |
| Direction, Lane \# | EB 1 | WB 1 | NB 1 | SB 1 |  |  |  |  |  |  |  |  |
| Volume Total | 137 | 58 | 47 | 43 |  |  |  |  |  |  |  |  |
| Volume Left | 52 | 2 | 17 | 13 |  |  |  |  |  |  |  |  |
| Volume Right | 25 | 4 | 4 | 15 |  |  |  |  |  |  |  |  |
| cSH | 1549 | 1512 | 668 | 739 |  |  |  |  |  |  |  |  |
| Volume to Capacity | 0.03 | 0.00 | 0.07 | 0.06 |  |  |  |  |  |  |  |  |
| Queue Length 95th (ft) | 3 | 0 | 6 | 5 |  |  |  |  |  |  |  |  |
| Control Delay (s) | 3.0 | 0.3 | 10.8 | 10.2 |  |  |  |  |  |  |  |  |
| Lane LOS | A | A | B | B |  |  |  |  |  |  |  |  |
| Approach Delay (s) | 3.0 | 0.3 | 10.8 | 10.2 |  |  |  |  |  |  |  |  |
| Approach LOS |  |  | B | B |  |  |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 4.8 |  |  |  |  |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 23.7\% |  | Leve | Service |  |  | A |  |  |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |  |  |  |  |

HCM Unsignalized Intersection Capacity Analysis

| 157: Murdock Drive \& | $\begin{array}{r} \times 150 \\ \hline \end{array}$ | Eas |  |  |  |  |  |  |  | Timing Plan: PM Peak |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\Rightarrow$ | $\checkmark$ | $\rangle$ | 4 | $\uparrow$ | P | 4 | $\downarrow$ | $\checkmark$ | 5 | 4 |  |
| Movement | EBL | EBR | EBR2 | NBL | NBT | NBR | SBL | SBT | SBR | NWL2 | NWL | NWR |
| Lane Configurations | ${ }^{*}$ |  |  |  | ¢ |  |  | \$ |  |  | ${ }^{4}$ |  |
| Volume (veh/h) | 0 | 17 | 61 | 49 | 103 | 54 | 2 | 47 | 5 | 21 | 16 |  |
| Sign Control | Stop |  |  |  | Free |  |  | Free |  |  | Stop |  |
| Grade | 0\% |  |  |  | 0\% |  |  | 0\% |  |  | 0\% |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Hourly flow rate (vph) | 0 | 18 | 66 | 53 | 112 | 59 | 2 | 51 | 5 | 23 | 17 |  |
| Pedestrians |  |  |  |  |  |  |  |  |  |  |  |  |
| Lane Width (ft) |  |  |  |  |  |  |  |  |  |  |  |  |
| Walking Speed (fts) |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |  |  |  |  |
| Right tum flare (veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Median type |  |  |  |  | None |  |  | None |  |  |  |  |
| Median storage veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Upstream signal (ft) |  |  |  |  |  |  |  |  |  |  |  |  |
| pX, platoon unblocked |  |  |  |  |  |  |  |  |  |  |  |  |
| vC , conflicting volume | 315 | 335 | 54 | 57 |  |  | 171 |  |  | 382 | 309 | 14 |
| vC1, stage 1 conf vol |  |  |  |  |  |  |  |  |  |  |  |  |
| vC2, stage 2 conf vol |  |  |  |  |  |  |  |  |  |  |  |  |
| vCu, unblocked vol | 315 | 335 | 54 | 57 |  |  | 171 |  |  | 382 | 309 | 141 |
| tC, single (s) | 7.1 | 6.5 | 6.2 | 4.1 |  |  | 4.1 |  |  | 7.1 | 6.5 | 6.2 |
| tC, 2 stage (s) |  |  |  |  |  |  |  |  |  |  |  |  |
| tF (s) | 3.5 | 4.0 | 3.3 | 2.2 |  |  | 2.2 |  |  | 3.5 | 4.0 |  |
| p0 queue free \% | 100 | 97 | 93 | 97 |  |  | 100 |  |  | 96 | 97 | 100 |
| cM capacity (veh/h) | 606 | 564 | 1013 | 1548 |  |  | 1407 |  |  | 511 | 584 | 907 |
| Direction, Lane \# | EB 1 | NB 1 | SB 1 | NW 1 |  |  |  |  |  |  |  |  |
| Volume Total | 85 | 224 | 59 | 40 |  |  |  |  |  |  |  |  |
| Volume Left | 0 | 53 | 2 | 23 |  |  |  |  |  |  |  |  |
| Volume Right | 66 | 59 | 5 | 0 |  |  |  |  |  |  |  |  |
| cSH | 864 | 1548 | 1407 | 540 |  |  |  |  |  |  |  |  |
| Volume to Capacity | 0.10 | 0.03 | 0.00 | 0.07 |  |  |  |  |  |  |  |  |
| Queue Length 95th (ft) | 8 | 3 | 0 | 6 |  |  |  |  |  |  |  |  |
| Control Delay (s) | 9.6 | 2.0 | 0.3 | 12.2 |  |  |  |  |  |  |  |  |
| Lane LOS | A | A | A | B |  |  |  |  |  |  |  |  |
| Approach Delay (s) | 9.6 | 2.0 | 0.3 | 12.2 |  |  |  |  |  |  |  |  |
| Approach LOS | A |  |  | B |  |  |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 4.3 |  |  |  |  |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 36.3\% |  | CU Level | Service |  |  | A |  |  |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |  |  |  |  |

## SR-89 5/14/2007 2008 Existing Conditions <br> 6/12/2009

| HCM Unsignalized Intersection 165: 1000 South \& Locust Ave |  |  |  |  |  |  |  | Timing Plan: PM Peak |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\rangle$ | $\geqslant$ | 4 | $\dagger$ | $\downarrow$ | $\downarrow$ |  |  |
| Movement | EBL | EBR | NBL | NBT | SBT | SBR |  |  |
| Lane Configurations | M |  |  | $\uparrow$ | F |  |  |  |
| Volume (veh/h) | 273 | 58 | 36 | 130 | 98 | 114 |  |  |
| Sign Control | Stop |  |  | Free | Free |  |  |  |
| Grade | 0\% |  |  | 0\% | 0\% |  |  |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |  |
| Hourly flow rate (vph) | 297 | 63 | 39 | 141 | 107 | 124 |  |  |
| Pedestrians |  |  |  |  |  |  |  |  |
| Lane Width (tt) |  |  |  |  |  |  |  |  |
| Walking Speed (tts) |  |  |  |  |  |  |  |  |
| Percent Blockage |  |  |  |  |  |  |  |  |
| Right turn flare (veh) |  |  |  |  |  |  |  |  |
| Median type |  |  |  | None | None |  |  |  |
| Median storage veh) |  |  |  |  |  |  |  |  |
| Upstream signal (ft) |  |  |  |  |  |  |  |  |
| pX, platoon unblocked |  |  |  |  |  |  |  |  |
| vC , conflicting volume | 388 | 168 | 230 |  |  |  |  |  |
| $\mathrm{vC1}$, stage 1 conf vol |  |  |  |  |  |  |  |  |
| $\mathrm{vC2}$, stage 2 conf vol |  |  |  |  |  |  |  |  |
| vCu, unblocked vol | 388 | 168 | 230 |  |  |  |  |  |
| tC , single (s) | 6.4 | 6.2 | 4.1 |  |  |  |  |  |
| $\mathrm{t}, 2$ stage (s) |  |  |  |  |  |  |  |  |
| tF (s) | 3.5 | 3.3 | 2.2 |  |  |  |  |  |
| p0 queue free \% | 50 | 93 | 97 |  |  |  |  |  |
| cM capacity (veh/h) | 597 | 876 | 1337 |  |  |  |  |  |
| Direction, Lane \# | EB 1 | NB 1 | SB 1 |  |  |  |  |  |
| Volume Total | 360 | 180 | 230 |  |  |  |  |  |
| Volume Left | 297 | 39 | 0 |  |  |  |  |  |
| Volume Right | 63 | 0 | 124 |  |  |  |  |  |
| cSH | 633 | 1337 | 1700 |  |  |  |  |  |
| Volume to Capacity | 0.57 | 0.03 | 0.14 |  |  |  |  |  |
| Queue Length 95th (ft) | 89 | 2 | 0 |  |  |  |  |  |
| Control Delay (s) | 17.9 | 1.9 | 0.0 |  |  |  |  |  |
| Lane LOS | C | A |  |  |  |  |  |  |
| Approach Delay (s) | 17.9 | 1.9 | 0.0 |  |  |  |  |  |
| Approach LOS | , |  |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |
| Average Delay |  |  | 8.8 |  |  |  |  |  |
| Intersection Capacity Utilization |  |  | 49.6\% |  | ICU Level of | Service | A |  |
| Analysis Period (min) |  |  | 15 |  |  |  |  |  |

## SR-89 5/14/2007 2008 Existing Conditions <br> 12/2009

| HCM Unsignalized In 166: Center Street \& | $\begin{aligned} & \text { ters } \\ & 300 \end{aligned}$ | ction East | apac | y Ane |  |  |  |  |  | Timin | Plan: | Peak |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\rangle$ | $\rightarrow$ |  | $\checkmark$ | $\leftarrow$ |  | 4 | $\dagger$ | $p$ | $\checkmark$ | $\downarrow$ | $\checkmark$ |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | $\dagger$ |  |  | ¢ |  |  | \$ |  |  | ${ }_{4}$ |  |
| Sign Control |  | Stop |  |  | Stop |  |  | Stop |  |  | Stop |  |
| Volume (vph) | 36 | 139 | 65 | 19 | 125 | 0 | 26 | 148 | 24 | 9 | 136 | 31 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Hourly flow rate (vph) | 39 | 151 | 71 | 21 | 136 | 0 | 28 | 161 | 26 | 10 | 148 | 34 |
| Direction, Lane \# | EB 1 | WB 1 | NB 1 | SB 1 |  |  |  |  |  |  |  |  |
| Volume Total (vph) | 261 | 157 | 215 | 191 |  |  |  |  |  |  |  |  |
| Volume Leff (vph) | 39 | 21 | 28 | 10 |  |  |  |  |  |  |  |  |
| Volume Right (vph) | 71 | 0 | 26 | 34 |  |  |  |  |  |  |  |  |
| Hadj (s) | -0.10 | 0.06 | -0.01 | -0.06 |  |  |  |  |  |  |  |  |
| Departure Headway (s) | 5.2 | 5.5 | 5.3 | 5.3 |  |  |  |  |  |  |  |  |
| Degree Utilization, x | 0.38 | 0.24 | 0.32 | 0.28 |  |  |  |  |  |  |  |  |
| Capacity (veh/h) | 644 | 593 | 613 | 615 |  |  |  |  |  |  |  |  |
| Control Delay (s) | 11.3 | 10.2 | 10.8 | 10.4 |  |  |  |  |  |  |  |  |
| Approach Delay (s) | 11.3 | 10.2 | 10.8 | 10.4 |  |  |  |  |  |  |  |  |
| Approach LOS | B | B | B | B |  |  |  |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| Delay 10.8 |  |  | 10.8 |  |  |  |  |  |  |  |  |  |
| HCM Level of Service |  |  | B |  |  |  |  |  |  |  |  |  |
| Intersection Capacity UtilizationAnalysis Period (min) |  |  | 43.9\% | ICU Level of Service |  |  |  |  | A |  |  |  |
|  |  |  | 15 |  |  |  |  |  |  |  |  |  |

[^22]
## Appendix C: Access Management Guidelines

## Access Management

Access management is the practice of coordinating the location, number, spacing, and design of access points to minimize site access conflicts and maximize the traffic capacity and safety of a roadway. Uncoordinated growth along major travel corridors often results in strip development and a proliferation of access points. In many of these instances, each individual development along the corridor has its own access driveway. Numerous access points along major travel corridors create unnecessary conflicts between turning and through traffic which causes delays and accidents. Numerous benefits are derived from controlling the location and number of access points to a roadway. Those benefits include:

- Improving overall roadway safety
- Reducing the total number of vehicle trips
- Decreasing interruptions in traffic flow
- Minimizing traffic delays and congestion
- Maintaining roadway capacity
- Extending the useful life of roads
- Avoiding costly highway projects
- Improving air quality
- Encouraging compact development patterns
- Improving access to adjacent land uses
- Enhancing pedestrian and bicycle facilities


## Principles of Access Management

Constantly growing traffic congestion, concerns over traffic safety, and the ever increasing cost of upgrading roads have generated interest in managing the access to not only the highway system, but to surface streets as well. Access management is the process that provides access to land development while simultaneously preserving the flow of traffic on the surrounding road system in terms of safety, capacity, and speed. Access management attempts to balance the need to provide good mobility for through traffic with the requirements for reasonable access to adjacent land uses.

Arguably the most important concept in understanding the need for access management is to insure the movement of traffic and access to property is mutually exclusive. No facility can move traffic very well and provide unlimited access at the same time. Figure 1 shows the relationship between mobility, access, and the functional classification of streets. The extreme examples of this concept are the freeways and the cul-de-sac. The freeway moves traffic very well with few opportunities for access, while the cul-de-sac has unlimited opportunities for access, but doesn't move traffic very well. In many
cases, accidents and congestion are the result of streets trying to serve both mobility and access at the same time.

A good access management program will accomplish the following:

- Limit the number of conflict points at driveway locations.
- Separate conflict areas.
- Reduce the interference of through traffic.
- Provide sufficient spacing for at-grade, signalized intersections.
- Provide adequate on-site circulation and storage.


Figure 1 Mobility vs. Access by Functional Classification

Access management attempts to put an end to the seemingly endless cycle of road improvements followed by increased access, increased congestion, and the need for more road improvements.

Poor planning and inadequate control of access can quickly lead to an unnecessarily high number of direct accesses along roadways. The movements that occur on and off roadways at driveway locations, when those driveways are too closely spaced, can make it very difficult for through traffic to flow smoothly at desired speeds and levels of safety. The American Association of State Highways and Transportation Officials (AASHTO) state that "the number of accidents is disproportionately higher at driveways than at other intersections...thus their design and location merits special consideration."

Studies have shown that anywhere between 50 and 70 percent of all crashes that occur on the urban street system are access related.

Fewer direct accesses, greater separation of driveways, and better driveway design and location are the basic elements of access management. There is less occasion for through traffic to brake and change lanes in order to avoid turning traffic when these techniques are implemented uniformly and comprehensively.

Consequently, with good access management, the flow of traffic will be smoother and average travel speeds higher. There will definitely be less potential for accidents. According to the Federal Highway Administration (FHWA), before and after analyses show that routes with well managed access can experience 50 percent fewer accidents than comparable facilities with no access controls.

## Roadway Functional Classification

Access spacing should recognize that access and mobility are competing functions. This recognition is fundamental to the design of roadway systems that preserve public investments, contribute to traffic safety, reduce fuel consumption and vehicle emissions, and do not become functionally obsolete. Suitable functional design of the roadway system also preserves the private investment in residential and commercial development

A typical trip on an urban street system can be described as occurring in identifiable steps. These steps can be sorted into a definite hierarchy with respect to how the competing functions of mobility and access are satisfied. At the low end of the hierarchy are highway facilities that provide good access to abutting properties, but provide limited opportunity for through movement. Vehicles entering or exiting a roadway typically perform the ingress or egress maneuver at a very low speed, momentarily blocking through traffic and impeding the movement of traffic on the roadway. At the high end of the hierarchy are facilities that provide good mobility by limiting and controlling access to the roadway, thereby reducing conflicts that slow the flow of through traffic.

Roadway specialization simply means using each individual street facility to perform the desired mix of the functions of access or movement. This is accomplished by classifying highways with respect to the amount of access or mobility they are to provide and then identifying and using the most effective facility to perform that function.

The functional system of classification divides streets into three basic classes identified as arterials, collectors, and local streets. The function of an arterial is to provide for mobility of through traffic. Access to an arterial is controlled to reduce interferences and facilitate through movement. Collector streets provide a mix for the functions of mobility and access, and therefore accomplish neither well. The predominate purpose of local streets is to provide good access. Each class of roadway has its own geometric, traffic control, and spacing requirements.

## Roadway Network and Access Management Standards

The access management concepts and standards presented below are consistent with guidelines established by the Federal Highway Administration (FHWA), the American Association of State Highway and Transportation Officials (AASHTO), the Transportation Research Board (TRB), and the Institute of Transportation Engineers (ITE).

## Access Management Techniques

There are a number of access management techniques that can be used to preserve or enhance the capacity of a roadway. Specific techniques for managing access are discussed in this section and illustrated with examples. Not all techniques will apply to every situation. Some of them are more appropriate to less developed rural areas of the City, whereas others are more appropriate in the urban areas. In the urban areas, the techniques can be applied when existing sites are redeveloped or when negotiations with landowners are successful. Therefore, it is up to the City's Planning Board to determine what will work best based in each situation.

## Number of Access Points

Controlling the number of access points or driveways from a site to a roadway reduces potential conflicts between cars, pedestrians, and bicycles. Each parcel should normally be allowed one access point, and shared access is required were possible. Provisions can be made in the local land use regulations to allow for more than one access point where special circumstances would require additional accesses. Incentives such as density bonuses or reduced frontage requirements can encourage developers to utilize access from existing side roads or to construct side roads rather than directly access an arterial or a collector road.

## Spacing of Access Points

Establishing a minimum distance between access points reduces the number of points a driver has to observe and reduces the opportunity for conflicts. Spacing requirements should be based on the classification and design speed of the road, the existing and projected volume of traffic as a result of the proposed development, and the physical conditions of the site. Minimum spacing standards should be applied to both residential and commercial/industrial developments.

To ensure efficient traffic flow, new signals should be limited to locations where the progressive movement of traffic will not be impeded significantly. Uniform, or near uniform, spacing of signals is essential for the progression of traffic. As a minimum, signals should be spaced no closer than one-quarter mile ( 1,320 feet). It may be recommended on principal arterial streets that signals be spaced at one-third mile ( 1,760 feet) to one-half mile ( 2,640 feet).

Unsignalized driveways are far more common than signalized driveways. They affect all kinds of activity, not merely large activity centers. Traffic operational factors leading toward wider spacing of driveways (especially medium- and higher-volume driveways) include weaving and merging distances, stopping sight distance, acceleration rates, and storage distance for back-to-
back left turns. From a spacing perspective, these driveways should be treated the same as public streets. Sound traffic engineering criteria indicates that 500 feet or more should be provided between full-movement unsignalized accesses.

Restricted access movement (i.e., right-in/right-out access) can provide for additional access to promote economic development with minimum impact to the roadway facility. This type of access should be spaced to allow for a minimum of traffic conflicts and provide distance for deceleration and acceleration of traffic in and out of the access. The spacing requirement of accesses is based on the functional classification of the roadway facility and is shown in Table 1. Access spacing shall be measured from center of access to center of access. The spacing of right-turn accesses on each side of a divided roadway can be treated separately; however, where left-turn at median breaks are involved, the access on both sides should line up or be offset from the median break by a minimum of 300 feet. On undivided roadways, access on both sides of the road should be aligned. Where this is not possible, driveways should have an offset distance based on the roadway classification (Table 2). This offset is the distance from the center of an access to the center of the next access on the opposite side of the road.

Table 1 Access Spacing Based on Functional Classification

| Functional <br> Classification | Minimum Signal <br> Spacing (ft)* | Minimum Unsignalized <br> Full-Movement Access <br> Spacing (ft)* | Minimum Right- <br> In/Right-Out Access <br> Spacing (ft)* |
| :---: | :---: | :---: | :---: |
| Major Arterial | 2,640 | 660 | 330 |
| Minor Arterial | 1,320 | 500 | 250 |
| Collector | 1,320 | 500 | 250 |
| Commercial Local | 1,320 | 660 | 330 |
| Residential Local | 1,320 | 125 | 100 |
| Residential Sub-Local | 1,320 | 100 | 75 |

*Distances in table are measured from center to center of driveway.
Table 2 Minimum Offset between Driveways on Opposite Sides of Undivided Roadways

| Functional Classification | Minimum Offset (ft)* |
| :---: | :---: |
| Major Arterial | 600 for speed $\geq 45 \mathrm{mph}$ and 300 for speeds $<45 \mathrm{mph}$ |
| Minor Arterial | 220 |
| Collector | 200 |
| Commercial Local | 200 |
| Residential Local | N/A |
| Residential Sub-Local | N/A |

[^23]
## Medians

Medians are used to control and manage left turns and crossing movements as well as separating traffic moving in opposite directions. Restricting left turning movements reduces the conflicts between through and turning traffic resulting in improved safety. Studies have shown that the installation of a non-traversable median will reduce crashes by $30 \%$ over that of a two way left turn lane (TWLTL). Medians are typically used on arterial or other roadways with high volumes of traffic and four or more lanes of traffic.

The use and design of a median is determined by the characteristics of the roadway such as: traffic volumes, speed, number and configuration of lanes, right-of-way width and land uses along the roadway. The need for a median can be identified through engineering review, a traffic study assessing the impact of a proposed project, and should be considered on any roadway that has a speed limit greater than 40 MPH . Medians can improve pedestrian safety by providing a refuge area for those crossing the street. The designer should consider incorporating pedestrian refuge at all major intersection crossings.

In addition, medians are often used in commercial and residential developments to separate lanes of traffic and limit conflicts caused by left turns. Medians can also add to the overall aesthetics of a roadway corridor or a development by incorporating landscaping or other items of visual interest. A well designed roadway with good access management can be aesthetically pleasing. It provides the landscape architect greater opportunity in the development of practical and efficient landscape plans. However care should be taken to maintain sight distance around the intersection /access locations. It is therefore required that only ground cover plantings be planted within 350 feet of an intersection/access opening. Also care should be taken to select landscape materials and location of the materials that will not intrude into the roadway which could result a safety problem for the motorist. Also care should be taken in selection of trees that when mature will not be larger than a 4 inch diameter.

Continuous two way left turn lanes can reduce the conflict and delays caused by vehicles turning left through on-coming traffic. Left turn lanes also reduce accidents caused by slowing vehicles and traffic going around on the right. Two way left turn lanes should only be used to retrofit areas of existing development and shall be limited to a roadway with less than 18,000 ADT. New roads that utilize other access management techniques should not need a two way left turn lane.

Median openings are provided at all signalized at-grade intersections. They are also generally provided at unsignalized junctions of arterial and collector streets. They may be provided at driveways, where they will have minimum impact on roadway flow. The spacing of median openings for signalize driveways should reflect traffic signal coordination requirements and the storage-space needed for left turns. Minimum desired spacing of unsignalized median openings at driveways shall be based on the left turn storage requirements. Median openings for left-
turn entrances (where there is no left-turn exit from the activity center) should be spaced to allow sufficient storage for left-turning vehicles.

Left-turn ingress or egress requires a median opening when traffic traveling in opposing directions is separated by a barrier median. Median widths commonly vary from 30 inches to over 30 feet. A 14 foot median is desirable in order to provide for an adequate left turn lane at intersections.

Design elements include the median width, the spacing of median openings and the geometries of median noses at opening. Typically, median widths at intersections are 30 inches formed by two 15 inch curbs back to back with a plowable (tapered) end.

## Corner Clearance

Corner Clearance is the distance between a driveway and an intersection. Providing adequate corner clearance improves traffic flow and roadway safety by ensuring that the traffic turning into the driveway does not interfere with the function of the intersection. Local regulations should require that driveways be located a minimum distance from an intersection based on roadway classification or speed. Any access opening shall not be located within the functional area of the intersection as shown in Figure 2.

## Functional Area of Intersection



Source: Adapted from Florida Department of Transportation

Figure 2 Functional Area of Intersections

Corner Clearance shall be based on an engineering study that includes the following distances illustrated in Figure 4 and Table 3. Figure 4 shows an example inadequate corner clearance that can inhibit roadway capacity and decrease safety.


Figure 3 Corner Clearance Types

Table 3 Corner Clearance Criteria

| Clearance Type | Sample Clearance Criteria |
| :--- | :--- |
| A- Approach side on the major roadway | Equal or exceed the functional distance of <br> the intersection d1+d2+d3 (based on <br> engineering study). <br> d1= Distance traveled during perception <br> d2 = Distance traveled while driver <br> decelerates to a stop <br> d3= Storage length |
| B- Departure side on the major roadway | Residential Roadways <br> Collector Roadways <br> Arterial Roadways |
| C- Approach side on the minor roadway | Shall be a minimum of 100 feet |
| D- Departure side on the minor roadway | Shall be a minimum of 120 feet |

[^24]

## Figure 4 Inadequate Corner Clearance

## Width of Access Points

Uncontrolled access is a serious hazard for vehicles entering or exiting a site, vehicles passing by a site, bicyclists and pedestrians. In addition to limiting the number of access points, the width of the access point should be restricted based on the use of the site in question. Residential driveways should be limited to a maximum width of 32 feet at the edge of pavement, including turning radii. The maximum width for a commercial or industrial site entrance with two-way traffic should be limited to 44 feet including $12^{\prime}$ for right out $12^{\prime}$ for left out with $16^{\prime}$ for ingress lane and 2-2 foot shoulders. The width of the entrance should be determined based on the type of use for the site, the type of traffic (i.e. cars vs. 18 wheel trucks), and the projected volume of traffic.

## Turning Radius

The turning radius of a driveway or access road affects both the flow and safety of through traffic as well as vehicles entering and exiting the roadway. The size of the turning radius affects the speed at which vehicles can exit the flow of traffic and enter a driveway. In general, the larger the turning radius, the greater the speed at which a vehicle can turn into a site. An excessively small turning radius will require a turning vehicle to slow down significantly to make the turn, therefore backing up the traffic flow or encroaching into the other lane. An excessively large turning radius will encourage turning vehicles to travel quickly, thereby creating hazards to pedestrians. Either of these situations increases the potential for accidents.

The speed of the roadway, the anticipated type and volume of the traffic, pedestrian safety and the type of use proposed for the site should be considered when evaluating the turning radius. Proposed uses that would require deliveries by large trucks (such as major retail establishments and gas stations) should provide larger turning radii to accommodate such vehicles. Other uses
such as banks, offices or areas with high pedestrian traffic could adequately be served with smaller turning radii based on the type of traffic they would generate.

## Throat Length

Throat Length is the length of the driveway that is controlled internally from turning traffic measured from the intersection with the road. Driveways should be designed with adequate throat length to accommodate queuing of the maximum number of vehicles as defined by the peak period of operation in the traffic study. This will prevent potential conflicts between traffic entering the site and internal traffic flow. Inadequate throat length may cause turning traffic to back up onto the road thereby impeding traffic flow and increasing the potential for accidents. The minimum throat length for an access into a minor commercial property is 50 feet. For major commercial development FHWA recommends a minimum throat length of 150 ' for a major driveway entrance, with $300^{\prime}$ desirable. Figure 5 shows both a poor and good example of driveway throat length.


Figure 5 Driveway Throat Length Examples

## Driveway Profiles

The slope of a driveway can dramatically influence its operation. Usage by large vehicles can have a tremendous effect on operations if slopes are severe. The profile, or grade, of a driveway should be designed to provide a comfortable and safe transition for those using the facility, and to accommodate the storm water drainage system of the roadway. A maximum grade of 2 percent for a minimum of 50' should be provided for commercial driveways. For street accesses and major traffic generators they shall be designed to meet street standards with no water ways crossing the opening. Table 4 gives the maximum change that can occur between the roadway cross-slope and the driveway slope.

Table 4 Maximum Change between Roadway Cross-Slope and Driveway Slope

| Roadway Functional <br> Classification | Driveway |  |
| :---: | :---: | :---: |
|  | $5 \%$ | Low Volume |
| Minor Arterial | $6 \%$ | $6 \%$ |
| Collector | $7 \%$ | $7 \%$ |
| Commercial Local | N/A | $8 \%$ |
| Residential Local | N/A | $\leq 10 \%$ |
| Residential Sub-Local | N/A | $\leq 12 \%$ |

## Shared Access

Access points shall be shared between adjacent parcels to minimize the potential for conflict between turning and through traffic. Shared access can be used effectively for both residential and nonresidential developments. Since the issues surrounding shared access for residential and nonresidential development are slightly different, they are discussed separately.

## Residential

Residential subdivisions located along arterial or collector roadways should be required to construct an internal road system rather than be developed along the existing roadway frontage or a single access cul-de-sac. Subdivision proposals should encourage a coordinated street network by providing rights-of-way or stubs for the extension of streets to adjacent parcels. This will prevent the proliferation of driveways on arterial and collector streets and provide for an interconnected street network.

Shared driveways shall also be used to minimize the number of curb cuts in residential districts, particularly along rural arterial and collector roads. If access is necessary from an arterial or collector then shared driveways is required. Shared driveways serving more than two homes will be built to fire lane standards.

## Commercial

Joint driveways providing access to adjacent developments, and interconnections between sites, are required for all development proposals on arterial and collector roadways. Interconnections between sites can eliminate the need for additional curb cuts, thereby preserving the capacity of the roadway. This is particularly important for commercial/industrial sites and should be used to encourage the development of internal or collector roadway systems servicing more than one parcel or establishment. Future roadway rights-of-way should also be provided to promote interconnected access to vacant parcels or to facilitate the consolidation of access points for existing developments.

Pedestrian access between developments will allow people to walk between establishments, thereby reducing the number of vehicle trips. Every opportunity should be taken to provide for interconnections between existing and future developments for both vehicles and pedestrians.

## Alignment of Access Points

Street and driveway intersections represent points of conflict for vehicles, bicycles and pedestrians. All modes of travel should be able to clearly identify intersections and assess the travel patterns of vehicles and pedestrians through the intersection. To minimize the potential conflicts and improve safety, intersections and driveways shall be aligned opposite each other wherever possible and intersect roadways at a 90 degree angle. Good driveway alignment will provide vehicles, bicycles, and pedestrians with a clear line of sight and allow them to traverse the intersection more safely.

## Sight Distance

Sight distance is the length of the road that is visible to the driver. A minimum safe sight distance should be required for access points based on the roadway classification. The American Association of State Highway and Transportation Officials (AASHTO) publication, A Policy on Geometric Design of Highways and Streets contains recommendations for sight distance based on the roadway design speed and grade. Providing sufficient intersection sight distance at the driveway point for vehicles using a driveway to see oncoming traffic and judge the gap to safely make their movement is essential. Vehicles should be able to enter and leave the property safely. Intersection sight distance varies, depending on the design speed of the roadway to be entered, and assumes a passenger car can turn right or left into a two-lane highway and attain 85 percent of the design speed without being overtaken by an approaching vehicle that reduces speed to 85 percent of the design speed. The table below gives intersection sight distance requirements for passenger cars. Sight distances should be adjusted with crossroad grade in accordance with AASHTO policies.

Table 5 Intersection/Driveway Sight Distance

| Posted Speed Limit (mph) | Sight Distance Required (ft)* |
| :---: | :---: |
| 30 | 335 |
| 35 | 390 |
| 40 | 445 |
| 45 | 500 |
| 50 | 555 |
| 55 | 610 |
| 60 | 665 |
| 65 | 720 |

*Based on a 2 lane roadway (for other lane configurations, refer to AASHTO for adjustments). Drivers' eye setback is assumed to be 15 feet measured from the edge of traveled way.

Normally, intersection sight distance will govern the required sight distance for the driveway but it is also important to verify that the main roadway have sufficient stopping sight distance. For example, a driver of a vehicle approaching an intersection should have an unobstructed view of the entire intersection including any traffic control devices and sufficient length along the intersecting highway to permit the driver to anticipate and avoid potential collisions. The safe stopping sight distance should be reviewed to make sure that the approaching vehicle has a clear view of the roadway in the area of the access. Sight distance may be more of a consideration in rural areas because of higher speeds and rolling/hilly terrain. The stopping sight distance will be greater for a roadway with a high speed and a downgrade as vehicles will take longer to stop in such a circumstance. Table 6 gives the safe stopping sight distance that should be provided for a driver on the roadway to have a clear view of the access/driveway. In making this determination for stopping sight distance, it should be assumed that the approaching driver's eye is 3.5 feet above the roadway surface and that the object to be seen is 2 feet above the surface of the road.

Table 6 Safe Stopping Sight Distances on Grades

| Design Speed <br> (mph) | Safe Stopping Sight Distance (ft) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Downhill Grades |  | Uphill Grades |  |
|  | $-3 \%$ | $-6 \%$ | $3 \%$ | $6 \%$ |
| 25 | 158 | 165 | 147 | 143 |
| 30 | 205 | 215 | 200 | 184 |
| 35 | 257 | 271 | 237 | 229 |
| 40 | 315 | 333 | 289 | 278 |
| 45 | 378 | 400 | 344 | 331 |
| 50 | 446 | 474 | 405 | 388 |
| 55 | 520 | 553 | 469 | 450 |

## Turning Lanes

Turning lanes remove the turning traffic from the through travel lanes. Left turning lanes are used to separate the left turning traffic from the through traffic. Right turn lanes reduce traffic delays caused by the slowing of right turning vehicles. Designated right or left turn lanes are generally used in high traffic situations on arterial and collector roadways. A traffic impact study will identify the need for and make recommendations on the design of turning lanes or tapers based on the existing traffic volumes, speed, and the projected impacts of the proposed use.

## Storage Length

The length of the turning lane shall be a minimum of 100 feet and at an unsignalized intersection it shall be a minimum length to accommodate 2-25 foot vehicles based on the number of vehicles likely to arrive in a 2 minute period at peak hour. For signalized
intersections, the storage length shall be $11 / 2$ times the average number of vehicles that would queue per cycle during the peak hour based on design year volumes.

## Lane Width

Turning lanes shall normally be a minimum of 12 feet in width. Any exception will require approval from the City Engineer. For right turn lanes, provide an additional 12 feet of pavement to accommodate the lane.

## Left-turn Lanes

The provision of left-turn lanes is essential from both capacity and safety standpoints where left turns would otherwise share the use of a through lane. Shared use of a through lane will dramatically reduce capacity, especially when opposing traffic is heavy. Left-turn lanes should always be provided at a signalized intersection.

## Right-turn Lanes

Right-turn lanes remove the speed differences in the main travel lanes, thereby reducing the frequency and severity of rear-end collisions. They also increase capacity of signalized intersections and may allow more efficient traffic signal phasing.

## Length of Auxiliary Lanes

A separate turning lane consists of a taper plus a full width auxiliary lane. The design of turn lanes is based primarily on the speed at which drivers will turn into the lane, the speed to which drivers must reduce in order to turn into the driveway after traversing the deceleration lane, and the amount of vehicular storage that will be required. Other special considerations include the volume of trucks that will use the turning lane and the steepness of an ascending or descending grade.

The total length of an auxiliary lane is made up of the storage length plus the distance necessary to come to a stop from the prevailing speed of the road and the taper distance (which both vary based on speed). A taper length of 50 ft for speeds below $45 \mathrm{mph}, 75 \mathrm{ft}$ for speeds of 45 to 50 mph , and 100 ft for speeds over 50 mph is typical. If a two-lane turn lane is to be provided, it is recommended that a 10:1 taper be used to develop the dual lanes. The taper will allow for additional storage during short duration surges in traffic volumes. The length needed for a vehicles to come to a stop from either the design speed or an average running speed of a roadway are shown in Table 7. These deceleration lengths assume the roadway is on a 2 percent or less vertical grade. The storage distance plus the deceleration distance and taper distance will result in the total length of an auxiliary lane (Figure 6).

## Table 7 Deceleration Length

| Speed (mph) | Deceleration Length (ft)* |
| :---: | :---: |
| 30 | 170 |
| 35 | 220 |
| 40 | 275 |
| 45 | 340 |
| 50 | 410 |
| 55 | 485 |
| 60 | 510 |
| 65 | 570 |

*Assume the roadway is on a 2 percent or less vertical grade.


Figure 6 Auxiliary Lane Length

## Pedestrian and Bicycle Access

A key aspect of access management is reducing the number of vehicle trips. This can be accomplished by providing safe and appealing pedestrian access within developments and between adjacent developments.

All new development and redevelopment of existing sites should address pedestrian and bicycle access to and within the site. Sidewalks should be provided in all urban residential subdivisions and in or adjacent to commercial or industrial developments. Sidewalks and other pedestrian facilities should comply with the Americans with Disabilities Act (ADA) Standards for Accessible Design. Crosswalks should be clearly marked and located in appropriate areas. Paint or paving materials can be used to delineate crosswalks. In addition to traditional brick, an alternative involves imprinting the asphalt with a brick design and then painting the crosswalk.

Parking lot designs need to address pedestrian access to the site and circulation within the site. Five foot wide sidewalks or striped pedestrian crossings should be provided from adjacent sites through parking lots to promote safe pedestrian access. Safe and appealing pedestrian circulation systems allow people to park their cars once and walk to different establishments, resulting in an overall reduction in the number of vehicle trips. Joint and cross access between developments can provide opportunities for shared parking.

## Appendix D: Public Involvement

Public involvement is a key element to producing an effective and worthwhile transportation master plan for the City to implement and follow. Collecting and responding to public input allows City staff and decision-makers to consider all the issues and to address them appropriately. An intensive effort was put forth to collect public comment regarding this particular update of the City's transportation master plan, including the following actions:

## Website

A draft of the transportation master plan document was posted on the City's website (http://www.plgrove.org/) for the public to download and review.

## Open House

An open house was held to present the proposed updated Pleasant Grove City Transportation Master Plan to the public. The open house was held on May 13, 2009 at the Community Development Building in Pleasant Grove, Utah. The meeting was attended by approximately 80 to 100 people and 17 comments were received.

- Advertisement
- Postcard - Individual postcards were mailed to 1,316 residents located within 200 feet of a proposed roadway widening or new roadway alignment. Of the 1,316 postcards mailed, only 92 postcards were returned to sender. The postcard and mailing list are included in this report.
- Utility Bills - An announcement was placed in the Pleasant Grove City utility bills.
- Website - Details of the open house were posted on the City's website (http://www.plgrove.org/).
- Presentation - The following displays were shown to the public at the open house and are included in this report:
- Proposed Pleasant Grove 2040 Roadway Master Plan
- Existing \& Proposed Pleasant Grove Bicycle and Pedestrian Facilities
- Pleasant Grove Future Transit Plans
- Typical Sections
- Comments - A comment form was provided at the public open house for residents to communicate their concerns and approval of specific elements of the proposed plan. A total of 17 comments were received. A summary of these comments as well as responses are included in this report.


## City Council and Planning Commission Meetings

A progress report of the transportation master plan update process was presented at both City Council and Planning Commission Meetings on May 26, 2009 and May 28, 2009 respectively. The presentation is included in this report.

## Final Public Hearing

A final public hearing is scheduled for June 23, 2009.

## Conclusion

Public involvement has proven to be a critical element of the planning process. As the City updates this plan in the future, public input should be collected and taken into account as this plan evolves.

## Attachments

The following items are included in this report:

- Open House Advertisement:
o Postcard
o Postcard Mailing List
o Newsletter placed in utility bills
- Open House Attendance List
- Open House Displays
- Open House Comments and Responses
- City Council and Planning Commission Meetings Presentation


## Open House Advertisement

- Postcard
- Postcard Mailing List
- Newsletter placed in utility bills



## PIEASANT GROVE CITY TRANSPORTATIOWMASTER PLAN

To view a draft of the proposed plan please visit http://www.plgrove.org/.

You may attend any time between 6:30 and 8:00, there will not be a formal presentation.

Members of the community will have an opportunity to review the proposed Transportation Master Plan for the city, including roads, transit, bicycle and pedestrian facilities. City staff will be available to answer questions and receive comments.

86 EAST 100 SOUTH PLEASANT GROVE, UTAH 84062

Orange text indicates postcards that were returned to sender.

|  | OWNER | MAIL STREET | MAIL CITY | MAIL STATE | MAIL ZIP CODE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | AARON, JACKIE WILSON | 3894 W 9850 NORTH | PLEASANT GROVE | UT | 84062 |
|  | ABBOTT, CHARLES F | 4411 SHEFFIELD DR | PROVO | UT | 84604 |
|  | ACA PROPERTIES L.C. | PO BOX 339 | MIDVALE | UT | 84047 |
|  | ADAIR, MORGAN B \& MARTA J JT | 50 W 725 NORTH | LINDON | UT | 84042 |
|  | ADAMS, AARON B \& TIFFANY JT | 888 W 2800 NORTH | PLEASANT GROVE | UT | 84062 |
|  | ADAMS, BRADY E \& ROBIN T JT | 1491 W 80 SOUTH | PLEASANT GROVE | UT | 84062 |
|  | ADAMS, GLEN WELDON | 67 E 300 SOUTH | PLEASANT GROVE | UT | 84062 |
|  | ADAMS, J RICHINS \& MARLEENE H TEE | 98 S 1100 EAST | AMERICAN FORK | UT | 84003 |
|  | ADAMS, JARED \& HOLLY JT | 1567 W 80 SOUTH | PLEASANT GROVE | UT | 84062 |
|  | ADAMS, MICHAEL E \& KATHRYN J JT | 4291 N 900 WEST | PLEASANT GROVE | UT | 84062 |
|  | ADAMS, MICHELE ARROWSMITH | 1338 RENAISSANCE PL | PLEASANT GROVE | UT | 84062 |
|  | ADAMS, ORIN A \& NAOMI JT | 752 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
|  | ADAMS, PATRICIA R | 669 ROCKY KNOLL LN | DRAPER | UT | 84020 |
|  | ADAMS, PAULINE | 524 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
|  | ADAMS, THOMAS A \& BEA W TEE | 95 S 1050 EAST | PLEASANT GROVE | UT | 84062 |
|  | AJF PROPERTIES LLC | 1554 N 300 EAST | PLEASANT GROVE | UT | 84062 |
|  | ALEMAN, JORGE A | 2267 N 600 WEST | PLEASANT GROVE | UT | 84062 |
|  | ALL AMERICAN DEVELOPMENT AND CONSTRU | 10253 N OAK RD | CEDAR HILLS | UT | 84062 |
|  | ALL STAR AUTOMOTIVE INVESTMENTS LC | 656 N 2000 WEST | PLEASANT GROVE | UT | 84062 |
|  | ALLEN, JUSTIN B \& ALEXIS G JT | 681 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
|  | ALLEN, PAUL E \& JUDY JT | 60 N 100 EAST | PLEASANT GROVE | UT | 84062 |
|  | ALLEN, STEPHEN R \& CAROLYN JT | 166 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
|  | ALLEN, STEVEN C \& MARLA G JT | 9590 CANYON RD | PLEASANT GROVE | UT | 84062 |
|  | ALLENBACH, BRENT H | 1334 RENAISSANCE PL | PLEASANT GROVE | UT | 84062 |
|  | ALLMAN, KELLY J \& ELIZABETH A ET AL | 2409 N 1050 WEST | PLEASANT GROVE | UT | 84062 |
|  | ALLRED, JASON M | 330 S 100 EAST | PLEASANT GROVE | UT | 84062 |
|  | ALLRED, KEITH B \& JUDITH L | 1240 N 100 EAST | PLEASANT GROVE | UT | 84062 |
|  | ALLRIDGE, DALLAN L \& SUSAN C JT | 1629 N 390 WEST | PLEASANT GROVE | UT | 84062 |
|  | ALLRIDGE, LEE R \& DALLAN JT | 267 N 530 EAST | AMERICAN FORK | UT | 84003 |
|  | ALOHA INVESTMENTS LLC | 492 W 700 SOUTH | OREM | UT | 84058 |
|  | ALPINE ECHO 1 INC | 775 COVENTRY LN | ALPINE | UT | 84004 |
|  | ALPINE PEDIATRICS PROPERTY MANAGEMEN | 1912 W 930 NORTH | PLEASANT GROVE | UT | 84062 |
|  | ALVAREZ, ROBERT C | 1479 W 80 SOUTH | PLEASANT GROVE | UT | 84062 |
|  | AMATO, DOUGLAS \& SUSAN G JT | PO BOX 204 | VINA | CA | 96092 |
|  | AMERICAN SPRINGS DEVELOPMENT COMPANY | 146 W 700 NORTH | AMERICAN FORK | UT | 84003 |
|  | AMG ENTERPRISES INC | 6 S 400 WEST | LINDON | UT | 84042 |
|  | AMSOURCE PLEASANT GROVE LC ET AN INT | 358 S RIO GRANDE ST \#200 | SALT LAKE CITY | UT | 84101 |
|  | ANDERSON, ARRON W \& IDA C TEE | 712 E 900 SOUTH | PLEASANT GROVE | UT | 84062 |
|  | ANDERSON, CRAIG \& AMIE TEE | 1265 W 2850 NORTH | PLEASANT GROVE | UT | 84062 |
|  | ANDERSON, DEBBIE L | 1780 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
|  | ANDERSON, JAMES A \& AUDREY R TEE | 691 E 990 SOUTH | PLEASANT GROVE | UT | 84062 |
|  | ANDERSON, JEDEDIAH J \& KIMBERLY S | 936 N 1420 WEST | PLEASANT GROVE | UT | 84062 |
|  | ANDERSON, KEVIN B \& LISA A JT | 795 N 600 WEST | PLEASANT GROVE | UT | 84062 |
|  | ANDERSON, TONY J \& GINGER M JT | 1207 W 3420 NORTH | PLEASANT GROVE | UT | 84062 |
|  | ANDERSON, WILLIAM LET AL | 2460 W 450 SOUTH \#5 | SPRINGVILLE | UT | 84663 |
|  | ANDRUS, CHRIS | 1339 ALPINE WAY | PROVO | UT | 84606 |
|  | ANDRUS, PATRICIA L \& JON A TEE | 2445 CANYON RD | PLEASANT GROVE | UT | 84062 |
|  | ANGUS, DONALD J \& LE ANN | 502 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
|  | ANTOINE BUNKER FARMS LIMITED FAMILY | 6286 W 10890 NORTH | HIGHLAND | UT | 84003 |
|  | AOK FAMILY HOLDING TRUST | PO BOX 536 | FERRON | UT | 84523 |
|  | ARCHLAND PROPERTY I LLC | PO BOX 182571 | COLUMBUS | OH | 43218 |
|  | AREVALO, JOSE R \& OLINDA J JT | 357 W 800 NORTH | LINDON | UT | 84042 |
|  | ARIAS, ITALO M ET AL | 1520 E MURDOCK DR | PLEASANT GROVE | UT | 84062 |
|  | ARNEY, TRACEE L \& JAMES D JT | 738 W 2240 NORTH | PLEASANT GROVE | UT | 84062 |
|  | AROTEC ENG CO | 747 W 400 SOUTH | OREM | UT | 84058 |
|  | ARSON, GREG | 252 W 1290 NORTH | AMERICAN FORK | UT | 84003 |
|  | ASBEY, GAYLE | 2480 N 600 WEST | PLEASANT GROVE | UT | 84062 |
|  | ASH, LLOYD K \& LINDA R | 294 E 300 SOUTH | PLEASANT GROVE | UT | 84062 |
|  | ASHER, DUSTY R \& LACY K JT | 1261 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
|  | ASHROSS L.C. | 530 S 250 WEST | PLEASANT GROVE | UT | 84062 |


| 61 | ASHTON, RANDY D \& JULIE R JT | 331 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 62 | ASTON, VERNON R \& JENNIFER P JT | 1597 N 150 EAST | PLEASANT GROVE | UT | 84062 |
| 63 | ATKINSON, ADRIAN D TEE | PO BOX 647 | PLEASANT GROVE | UT | 84062 |
| 64 | ATKINSON, ARLEN T \& PATRICIA JT | 241 S 100 EAST | PLEASANT GROVE | UT | 84062 |
| 65 | ATKINSON, DELBERT W \& KARLA M JT | 4633 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 66 | ATKINSON, JACOB I \& AMANDA G JT | 1793 GARDEN DR | PLEASANT GROVE | UT | 84062 |
| 67 | ATTERTON, R BRENT \& KIM JT | 1777 N 70 EAST | PLEASANT GROVE | UT | 84062 |
| 68 | ATWOOD, GRANT L \& FLORENCE TEES | 4966 W 11000 NORTH | HIGHLAND | UT | 84003 |
| 69 | ATWOOD, SCOTT \& ERIKA TEE | 1259 W 2310 NORTH | PLEASANT GROVE | UT | 84062 |
| 70 | AULT, LEO H \& VIRGINIA A JT | 357 LOADER DR | PLEASANT GROVE | UT | 84062 |
| 71 | AUSTIN, STEPHEN | 986 W 270 SOUTH \#103 | PLEASANT GROVE | UT | 84062 |
| 72 | AVANYU ACRES OWNERS ASSOCIATION | 9543 AVANYU DR | CEDAR HILLS | UT | 84062 |
| 73 | AVERETT, CASEY G \& TRACY JT | 1825 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 74 | BAGGS, STEPHEN F \& ARDEAN C | 5217 MCKINNEY WAY | CARMICHAEL | CA | 95608 |
| 75 | BAILEY, REBECCA | 1511 W 80 SOUTH | PLEASANT GROVE | UT | 84062 |
| 76 | BAIR, REED I \& JOAN L JT | 945 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 77 | BAIRD, MARTIN H | 1478 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 78 | BAKER, DENNIS | 250 SOUTH BEACHWOOD, STE 120 | BOISE | ID | 83709 |
| 79 | BAKER INVESTMENTS LLC | 250 BEECHWOOD DR \#120 | BOISE | ID | 83709 |
| 80 | BAKER, BLAIR H \& CONNIE S JT | 1021 N 1600 WEST | PLEASANT GROVE | UT | 84062 |
| 81 | BAKER, JED \& SHEILA TEE | $131 / 2$ BOUSCAY AV | NORWALK | OH | 44857 |
| 82 | BALD MOUNTAIN DEVELOPMENT LLC ET AL | 5373 W 10480 NORTH | HIGHLAND | UT | 84003 |
| 83 | BALDWIN AND GAGON CONSTRUCTION COMPA | 1625 E 480 SOUTH | PLEASANT GROVE | UT | 84062 |
| 84 | BALDWIN, RHETT B | 986 W 270 SOUTH \#203 | PLEASANT GROVE | UT | 84062 |
| 85 | BALL, DANA D | 2059 TUSCANY WAY | PLEASANT GROVE | UT | 84062 |
| 86 | BANK OF AMERICAN FORK | 33 E MAIN ST | AMERICAN FORK | UT | 84003 |
| 87 | BANKS, BRET C \& LISA M JT | 990 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 88 | BARIA, JO ANN | 3959 SIDNEY ST SE | LACEY | WA | 98503 |
| 89 | BARNEY, DAVID \& HEATHER JT | 1361 W 50 NORTH | PLEASANT GROVE | UT | 84062 |
| 90 | BARNHARDT, ROLLAND J \& ROLAND JT | 306 S 100 EAST | PLEASANT GROVE | UT | 84062 |
| 91 | BASSETT, TOM | PO BOX 727 | BIGGS | CA | 95917 |
| 92 | BATCHLER, JACK W \& RUTH J | PO BOX 580 | PLEASANT GROVE | UT | 84062 |
| 93 | BATH, JANA W \& NORMAN J TIC | 1004 W 1000 NORTH | PLEASANT GROVE | UT | 84062 |
| 94 | BAUGH, CASEY | 4937 W 11000 NORTH | HIGHLAND | UT | 84003 |
| 95 | BAUMAN, JOHN A \& LYNDA D | 1150 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 96 | BAXTER, KAY F | 25 SMITH LN | PLEASANT GROVE | UT | 84062 |
| 97 | BEAGLEY, HEATHER J \& HEATHER J | 9540 N CANYON RD | PLEASANT GROVE | UT | 84062 |
| 98 | BEAN, CINDY TEE | 9231 S REDWOOD RD | WEST JORDAN | UT | 84088 |
| 99 | BEAN, CINDY R | 15 S 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 100 | BEAR DEVELOPMENT LLC | 838 W 4230 NORTH | PLEASANT GROVE | UT | 84062 |
| 101 | BECK, DARREL J \& CINDIE K JT | 798 W 1000 NORTH | PLEASANT GROVE | UT | 84062 |
| 102 | BEESLEY, WAYNE | 702 UTAH AV | PROVO | UT | 84606 |
| 103 | BEFUS, SCOTT JASON | 84 S 850 EAST | PLEASANT GROVE | UT | 84062 |
| 104 | BELLISTON, FAYE S \& MARCUS J TEE | 147 W HIDDEN HOLLOW CIR | OREM | UT | 84058 |
| 105 | BELMONT ESTATES LLC | 1549 E 400 SOUTH | PLEASANT GROVE | UT | 84062 |
| 106 | BENNETT LAND HOLDINGS LLC ET AL | 5 IRONWOOD DR | NORTH SALT LAKE | UT | 84054 |
| 107 | BENNETT, GLENNETA R | 4591 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 108 | BENNETT, LAMAE H | 125 E 500 NORTH | PLEASANT GROVE | UT | 84062 |
| 109 | BENSON, C DAVID \& SANDRA K JT | 980 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 110 | BENSON, JO ANN \& DONALD W JT | 420 E 300 SOUTH | PLEASANT GROVE | UT | 84062 |
| 111 | BERGESON, DEAN R \& DIXIE A JT | 701 E 990 SOUTH | PLEASANT GROVE | UT | 84062 |
| 112 | BEST, JOHN E \& JULIE TEE | 2356 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 113 | BETHERS, DALE F \& EDITH H | 2831 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 114 | BEVERIDGE, GREGORY C \& NORMA JT | 1178 W 3300 NORTH | PLEASANT GROVE | UT | 84062 |
| 115 | BEVERIDGE, KENDALL LAMAR TEE | 10996 N 4800 WEST | HIGHLAND | UT | 84003 |
| 116 | BEZZANT, DOUGLAS G \& TAMRA B TIC | 376 S LOCUST AV | PLEASANT GROVE | UT | 84062 |
| 117 | BEZZANT, MAE S TEE | 360 S LOCUST AV | PLEASANT GROVE | UT | 84062 |
| 118 | BEZZANT, RICHARD L \& LORNA E JT | 325 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 119 | BIG SPRINGS DEVELOPMENT INC | 1610 N 525 EAST | PLEASANT GROVE | UT | 84062 |
| 120 | BIGELOW, BARBARA \& BRENT R TEE | 866 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 121 | BIGELOW, ROBERT B \& STEPHANIE JT | 1370 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 122 | BIGELOW, ROBERT D \& JILL B | 1330 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 123 | BINGHAM, ROBERT I \& RONNIE J | 1585 N MURDOCK DR | PLEASANT GROVE | UT | 84062 |
| 124 | BIRD, RYAN G \& JENNY A JT | 319 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 125 | BISHOP, ANDREW | 1476 N FREEDOM BLVD | PROVO | UT | 84604 |


| 126 | BISHOP, GREGORY L \& JESSICA N JT | 2845 N 900 WEST | PLEASANT GROVE | UT | 84062 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 127 | BISHOP, JARED L | 688 W 2760 NORTH | PLEASANT GROVE | UT | 84062 |
| 128 | BISHOP, REBECCA S \& STEVEN A TEE | 399 E STATE RD | PLEASANT GROVE | UT | 84062 |
| 129 | BLACK SCOT DEVELOPMENT LC | 1093 E 20 SOUTH | LINDON | UT | 84042 |
| 130 | BLACK SCOT DEVELOPMENT LLC | 3214 N UNIVERSITY AV \#104 | PROVO | UT | 84604 |
| 131 | BLACK, DUBBY J \& AMY L JT | 119 E 1640 NORTH | PLEASANT GROVE | UT | 84062 |
| 132 | BLACKHAM, MAX A \& MARY L JT | 2024 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 133 | BLACKHAM, NATHAN H \& JESSICA JT | 1635 W 50 NORTH | PLEASANT GROVE | UT | 84062 |
| 134 | BLACKHURST, M DEAN \& CHRISTIN TEE | PO BOX 79 | NEPHI | UT | 84648 |
| 135 | BLACKHURST, MICHAEL D \& CAROL JT | 2575 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 136 | BLACKHURST, REESE BERRY ET AL | 414 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 137 | BLAKE, DAVID C ET AL AN INT | 265 N COUNTRY MANOR LN | ALPINE | UT | 84004 |
| 138 | BLAKE, PHILIP T \& HELEN | 29 S 2000 WEST | PLEASANT GROVE | UT | 84062 |
| 139 | BLANCO, GERARDO R \& JANA L JT | 986 N 1600 WEST | PLEASANT GROVE | UT | 84062 |
| 140 | BLUE CHROME INVESTMENTS LLC | 1458 E 300 SOUTH | PLEASANT GROVE | UT | 84062 |
| 141 | BLUE RIBBON STORAGE LLC | 754 E 1200 NORTH | PLEASANT GROVE | UT | 84062 |
| 142 | BOBO, DOUGLAS J \& MARCELLE JT | 2728 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 143 | BOONE, JACOB H \& CHERYL E JT | 9454 CANYON RD | CEDAR HILLS | UT | 84062 |
| 144 | BORWEGEN, THOMAS G \& GEORGIAN JT | 359 E 500 SOUTH | PLEASANT GROVE | UT | 84062 |
| 145 | BOUDREAUX, BRANDON | 9332 CANYON RD | CEDAR HILLS | UT | 84062 |
| 146 | BOWCUT, DON L \& NORA G JT | 1130 W STATE RD | PLEASANT GROVE | UT | 84062 |
| 147 | BOWEN, BRIAN D \& JILL A JT | 651 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 148 | BOWEN, RICHARD L \& JANET M JT | 715 W 2000 NORTH | PLEASANT GROVE | UT | 84062 |
| 149 | BOWER, GENE \& MAY TEE | 450 W CENTER ST | PLEASANT GROVE | UT | 84062 |
| 150 | BOWERS, CHARLES REX | 1285 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 151 | BOWN, JAY ET AL | 795 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 152 | BOX ELDER PROPERTIES LIMITED PARTNER | 11038 HIGHLAND BLVD \#100 | HIGHLAND | UT | 84003 |
| 153 | BOX, PATRICK M \& MARLENE JT | 1835 N 820 WEST | PLEASANT GROVE | UT | 84062 |
| 154 | BOYD, GERALD | 668 W 4000 NORTH | PLEASANT GROVE | UT | 84062 |
| 155 | BOYER, D ROY \& LORRAINE S TEE | 2622 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 156 | BPW LLC | 1801 GLORY CREEK DR | LAS VEGAS | NV | 89128 |
| 157 | BRADSHAW, KIETH ( \& DOROTHY A JT | 4341 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 158 | BRADSHAW, WARREN B \& LE ORA E TEE | 210 N PRESTON DR | ALPINE | UT | 84004 |
| 159 | BRAGONJE LLC | 2480 S 3850 WEST \#C | WEST VALLEY CITY | UT | 84120 |
| 160 | BRANCOLINO, MATIAS \& ANGELICA | 180 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 161 | BRANDT, DON ET AL | 250 BEECHWOOD DR \#120 | BOISE | ID | 83709 |
| 162 | BRANDT, DON ET AL 30\%INT | 203 11TH AV SOUTH | NAMPA | ID | 83651 |
| 163 | BRANDT, WILLIAM J \& MITZI JT | 1594 W 1010 NORTH | PLEASANT GROVE | UT | 84062 |
| 164 | BRANIN, JAMES M \& KATHY M JT | 3473 N MAHOGANY DR | PLEASANT GROVE | UT | 84062 |
| 165 | BRATT, DEBRA | 185 S STATE ST \#1300 | SALT LAKE CITY | UT | 84111 |
| 166 | BRATT, JON R \& DEBRA R TEE | 635 S 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 167 | BRATT, LYNN M \& ELIZABETH A JT | 637 S 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 168 | BRB ENTERPRISES LIMITED PARTNERSHIP | 750 W PIONEER BLVD | MESQUITE | NV | 89027 |
| 169 | BRENNAN, DAVID S \& CARMEN K JT | 1951 TUSCANY WAY | PLEASANT GROVE | UT | 84062 |
| 170 | BRERETON, STERLING J \& DIANE JT | 205 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 171 | BRERETON, WESTON | 10363 N 6680 WEST | HIGHLAND | UT | 84003 |
| 172 | BRIA, CAMERON S \& JAIME L JT | 364 E 300 SOUTH | PLEASANT GROVE | UT | 84062 |
| 173 | BRIMHALL, VINCE A \& LORRIE A JT | 1244 W 3040 NORTH | PLEASANT GROVE | UT | 84062 |
| 174 | BROCKBANK, ROGER R | 4646 HIGHLAND DR | SALT LAKE CITY | UT | 84117 |
| 175 | BROMLEY, WILLIAM K \& DIANA JT | 1714 N 70 EAST | PLEASANT GROVE | UT | 84062 |
| 176 | BRONK, BRIAN | 623 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 177 | BROOKWOOD CONSTRUCTION \& DESIGN INC | 133 W 640 NORTH | AMERICAN FORK | UT | 84003 |
| 178 | BROWN, COLLEEN C TEE | 9610 OLD ORCHARD LN | CEDAR HILLS | UT | 84062 |
| 179 | BROWN, ELISE M ET AL | 81 N 1620 WEST | PLEASANT GROVE | UT | 84062 |
| 180 | BROWN, LARRY V \& YVONNE K ET AL | 930 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 181 | BROWNING, JENNIFER P \& CORY R JT | 2869 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 182 | BRUNDAGE-BONE CONCRETE PUMPING INC | 350 W 700 SOUTH | PLEASANT GROVE | UT | 84062 |
| 183 | BRYANT, PATRICIA | 18583 JEFFERSON AV | CEDAR VALLEY | UT | 84013 |
| 184 | BRYANT, R JACOB \& REBECCA JT | 3686 N 900 WEST | PLEASANT GROVE | UT | 84062 |
| 185 | BUCKNER, CHAD W \& MICKIE JT | 3870 MOUNTAIN TOP CIR | CEDAR HILLS | UT | 84062 |
| 186 | BULLOCK, HAZEL H | 1025 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 187 | BULLOCK, MARY T | 159 S PLEASANT GROVE BLVD \#15 | PLEASANT GROVE | UT | 84062 |
| 188 | BULLOCK, W BRENT \& CONNIE L JT | 1419 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 189 | BURGENER, GERRY \& DANA JT | 1357 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 190 | BURKETT, BRYANT \& ELLEN JT | 523 N 1300 WEST | PLEASANT GROVE | UT | 84062 |


| 191 | BURR, BRYAN ET AL TEE | 210 N PRESTON DR | ALPINE | UT | 84004 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 192 | BURR, DANIEL S \& KRISTEN D JT | 9691 CHESTERFIELD DR | CEDAR HILLS | UT | 84062 |
| 193 | BURR, LOYE ANN | 254 S 1100 EAST | AMERICAN FORK | UT | 84003 |
| 194 | BURT, FLORENCE M TEE | 78 W 725 NORTH | LINDON | UT | 84042 |
| 195 | BURTT, KEVIN M | 1251 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 196 | BUSHMAN, GERALD L \& PEGGY A TEE | 990 E 900 SOUTH | PLEASANT GROVE | UT | 84062 |
| 197 | BYBEE, CHAD | 145 S PROCTOR LA | PLEASANT GROVE | UT | 84062 |
| 198 | BYLUND PROPERTIES LLC | 411 S 640 WEST | PLEASANT GROVE | UT | 84062 |
| 199 | CABIN LAND LLC | 501 S MAIN ST | PLEASANT GROVE | UT | 84062 |
| 200 | CABINLAND LLC | 1 E CENTER ST \#321 | PROVO | UT | 84606 |
| 201 | CAIN PROPERTIES LC | 14829 GRANITE RIDGE LN | DRAPER | UT | 84020 |
| 202 | CALDWELL, ROGER B \& JILL JT | 680 W 2300 NORTH | PLEASANT GROVE | UT | 84062 |
| 203 | CALL, JAMES E \& SANDRA L JT | 706 W 2240 NORTH | PLEASANT GROVE | UT | 84062 |
| 204 | CALTON, GORDON H \& KARI L JT | 1309 W 2180 NORTH | PLEASANT GROVE | UT | 84062 |
| 205 | CAMPBELL, CLINT E \& JENNIFER JT | 236 E 1640 NORTH | PLEASANT GROVE | UT | 84062 |
| 206 | CAMPBELL, GARY J \& LINDA B JT | 73 S 850 EAST | PLEASANT GROVE | UT | 84062 |
| 207 | CAPITAL COMMUNITY BANCORPORATION INC | 3280 N UNIVERSITY AV | PROVO | UT | 84604 |
| 208 | CARD, KAREN N \& KENNETH JT | 2899 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 209 | CARLSON, JOSEPH W \& CAROL E JT | 1243 W 3040 NORTH | PLEASANT GROVE | UT | 84062 |
| 210 | CARR, CHAD C \& ALISON M JT | 1778 N 70 EAST | PLEASANT GROVE | UT | 84062 |
| 211 | CARSON, CLYDE W \& THELMA B ET JT | 1807 W 1100 NORTH | PLEASANT GROVE | UT | 84062 |
| 212 | CARSON, EVA D \& DIANE ET AL | 1625 N FREEDOM BLVD | PROVO | UT | 84604 |
| 213 | CARTER, CARL \& MARSHA JT | 1347 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 214 | CARTER, DENNIS L \& DIANA M JT | 9 E 700 SOUTH | PLEASANT GROVE | UT | 84062 |
| 215 | CARTER, ROBERT E \& VANIECE M | 205 S 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 216 | CARTER, ROBERT E \& VANIECE M JT | PO BOX 156 | PLEASANT GROVE | UT | 84062 |
| 217 | CARTER, ROSEMARY \& FRANCINE JT | 681 W STATE RD | PLEASANT GROVE | UT | 84062 |
| 218 | CARTER, WESLEY E \& MARLENE J JT | 14 W 725 NORTH | LINDON | UT | 84042 |
| 219 | CASABAR, DAMON K \& HOLLY JT | 2932 N 1130 WEST | PLEASANT GROVE | UT | 84062 |
| 220 | CASSIS LAND COMPANY INC | 372 WATERSIDE RD | HEBER CITY | UT | 84032 |
| 221 | CC INVESTMENTS LC | PO BOX 265 | HEBER CITY | UT | 84032 |
| 222 | CENTENNIAL SQUARE LIMITED COMPANY | 1148 NATHANIEL DR | PLEASANT GROVE | UT | 84062 |
| 223 | CENTRAL BANK | 75 N UNIVERSITY AV | PROVO | UT | 84601 |
| 224 | CENTRAL BANK CUST | 228 W 725 NORTH | LINDON | UT | 84042 |
| 225 | CHADWICK, GLEN D \& VERNA P JT | 814 E 3540 SOUTH CIR | SAINT GEORGE | UT | 84790 |
| 226 | CHAPMAN, STEVEN \& LESLIE JT | 695 W 2240 NORTH | PLEASANT GROVE | UT | 84062 |
| 227 | CHARLESWORTH, D MARK \& LACEY S | 2514 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 228 | CHASE, BRENT \& PATRICIA JT | 835 E 100 SOUTH | PLEASANT GROVE | UT | 84062 |
| 229 | CHAVAN, AMIT B ET AL | 179 N 1630 WEST \#72 | PLEASANT GROVE | UT | 84062 |
| 230 | CHEIRASCO PROPERTIES LLC | 125 E MAIN ST \#611 | AMERICAN FORK | UT | 84003 |
| 231 | CHITWOOD, RICHARD L ET AL | 1442 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 232 | CHOI, DONG S \& KYUNG A JT | 764 N 400 EAST | LINDON | UT | 84042 |
| 233 | CHORNIAK, JERRY T \& JOAN A JT | 500 S GENEVA RD | PLEASANT GROVE | UT | 84062 |
| 234 | CHRISTENSEN, AARON V \& BROOKE JT | 781 W 1500 NORTH | PLEASANT GROVE | UT | 84062 |
| 235 | CHRISTENSEN, BRYANT \& DENNIS JT | 1201 E 1220 NORTH | OREM | UT | 84097 |
| 236 | CHRISTENSEN, DANIEL D | 1929 RIDGEHILL DR | BOUNTIFUL | UT | 84010 |
| 237 | CHRISTENSEN, EARL L | 1199 W STATE RD | PLEASANT GROVE | UT | 84062 |
| 238 | CHRISTENSEN, EARL L | 4512 W 8800 NORTH | AMERICAN FORK | UT | 84003 |
| 239 | CHRISTENSEN, NATHAN | 1473 W 80 SOUTH | PLEASANT GROVE | UT | 84062 |
| 240 | CHRISTENSEN, NIEL C \& ALICE W JT | 470 N 745 EAST | PLEASANT GROVE | UT | 84062 |
| 241 | CHRISTENSEN, NORRIS A \& CHERY 1/3INT | 1602 W 1000 NORTH | PROVO | UT | 84604 |
| 242 | CHRISTENSEN, PETER D \& DIANE JT | 375 S MAIN ST \#2 | ALPINE | UT | 84004 |
| 243 | CHRISTENSEN, RONALD G \& CHERY TEE | 2373 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 244 | CHRISTENSEN, RONALD G \& JAY D TIC | 1199 W STATE RD | PLEASANT GROVE | UT | 84062 |
| 245 | CHRISTENSEN, ZOE J | 699 E 990 SOUTH | PLEASANT GROVE | UT | 84062 |
| 246 | CHRISTIANSEN, BRIAN M \& CHRIS JT | 1785 N 270 WEST | PLEASANT GROVE | UT | 84062 |
| 247 | CHRISTIANSEN, TAMMY | 2180 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 248 | CHRISTOPHERSON, JOSHUA K \& RA JT | 1258 W 2850 NORTH | PLEASANT GROVE | UT | 84062 |
| 249 | CHRISTOPHERSON, LYNN A \& MELA JT | 1320 W 1340 NORTH | PLEASANT GROVE | UT | 84062 |
| 250 | CHUN, WILLY ET AL | 989 W 600 NORTH | PLEASANT GROVE | UT | 84062 |
| 251 | CHURCH, GEORGE D \& DARLENE L TEE | 678 E 900 SOUTH | PLEASANT GROVE | UT | 84062 |
| 252 | CHURCH, RAYMOND A \& SHARON H JT | 165 MAPLE LN | PLEASANT GROVE | UT | 84062 |
| 253 | CINDY \& DANA LLC | 875 E 400 NORTH | LINDON | UT | 84042 |
| 254 | CITYSIDE PROPERTIES LC | 65 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 255 | CLARK, ELVIN ET AL DBA | 448 W CENTER ST | PLEASANT GROVE | UT | 84062 |


| 256 | CLARK, JOHN W \& ELIZABETH M TEE | 55 E CENTER ST | PLEASANT GROVE | UT | 84062 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 257 | CLAUNCH, JON \& CLAIRE JT | 981 S 1150 EAST | PLEASANT GROVE | UT | 84062 |
| 258 | CLEGG, TRUDI ANN | 240 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 259 | CLEMENT, KYLE \& KATHLEEN B JT | 1615 E MURDOCK DR | PLEASANT GROVE | UT | 84062 |
| 260 | CLINGER FAMILY PARTNERSHIP | 1511 S GENEVA RD | OREM | UT | 84058 |
| 261 | CLINGO, LYNN E \& DOROTHY TEE | 9160 CANYON RD | CEDAR HILLS | UT | 84062 |
| 262 | CLOWARD, ROBERT G \& KRISTA JT | 1076 N 1700 WEST | PLEASANT GROVE | UT | 84062 |
| 263 | CLOWARD, RYAN B \& EMILY R JT | 1465 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 264 | CLUFF, TYLER F \& FLORIS A JT | 1985 TIMBERLINE RD | PACIFIC | MO | 63069 |
| 265 | COBABE, JOSHUA ET AL | 986 W 270 SOUTH \#301 | PLEASANT GROVE | UT | 84062 |
| 266 | COBB, ROBERT L \& SYLVIA F JT | 1957 W 1100 NORTH | PLEASANT GROVE | UT | 84062 |
| 267 | COLEMAN, BECKY | 261 S 930 WEST | PLEASANT GROVE | UT | 84062 |
| 268 | COLLEDGE, IVAN EUGENE ET AL | 159 N 900 EAST | SPANISH FORK | UT | 84660 |
| 269 | COLLINGS, BRUCE E \& SHIRLEY A ET AL | 298 N 1000 EAST | OREM | UT | 84097 |
| 270 | COMMONWEALTH LAND TITLE INSURANCE CO | 1200 6TH AV \#1900 | SEATTLE | WA | 98101 |
| 271 | COMPTON, AESALINA ET AL | 128 HAVEN LN | IDAHO FALLS | ID | 83404 |
| 272 | CONTINENTAL PIPE MANUFACTURING CO | 430 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 273 | COOK, CAMDEN M | 95 S 930 EAST | AMERICAN FORK | UT | 84003 |
| 274 | COOK, JEFFREY D \& STACEY JT | 1169 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 275 | COOK, JESSICA A ET AL | 298 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 276 | COOK, KEVIN M \& SUZANNE JT | 383 S LOCUST AV | PLEASANT GROVE | UT | 84062 |
| 277 | COOK, WYATT D \& LORI JT | PO BOX 728 | DUCHESNE | UT | 84021 |
| 278 | COOLEY, SAM C | 388 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 279 | CORDNER, DAWAYNE \& LINDA J JT | 2761 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 280 | CORP OF PRES BISHOP CHURCH OF JESUS | 50 E NORTH TEMPLE 12TH FLOOR | SALT LAKE CITY | UT | 84150 |
| 281 | COUCH, ROBERT BRINTON ET AL | 394 E 300 SOUTH | PLEASANT GROVE | UT | 84062 |
| 282 | COUNTY LIVING DEVELOPMENT ET AL | 1045 E 200 NORTH | PLEASANT GROVE | UT | 84062 |
| 283 | COWAN, LISA \& SAMUEL R JT | 1633 N 150 EAST | PLEASANT GROVE | UT | 84062 |
| 284 | COWGILL, JUNE D | 1070 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 285 | COX, LEWIS K \& SARA S JT | 184 E STATE RD | PLEASANT GROVE | UT | 84062 |
| 286 | CRANDALL, AARON | 989 SENIOR BAND RD | DRAPER | UT | 84020 |
| 287 | CREEKSIDE HOMEOWNERS ASSOCIATION | PO BOX 476 | OREM | UT | 84059 |
| 288 | CREST HOLDINGS L.C. | 49 W 7720 SOUTH | MIDVALE | UT | 84047 |
| 289 | CROOKSTON, BETTY JEAN ET AL | 830 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 290 | CROW, JEFFERY O \& CASSIE R | 2763 N 1450 WEST | PLEASANT GROVE | UT | 84062 |
| 291 | CULLIMORE, SANDRA V TEE | 291 S 100 EAST | PLEASANT GROVE | UT | 84062 |
| 292 | CULLIMORE, SANDRA VERNEE | 253 S 100 EAST | PLEASANT GROVE | UT | 84062 |
| 293 | CUMMINGS \& CUMMINGS LLC | 935 N 400 EAST | PLEASANT GROVE | UT | 84062 |
| 294 | CUMMINGS, ROBERT S \& LORRI K JT | 148 S 1140 EAST | LINDON | UT | 84042 |
| 295 | D \& S DEVELOPMENT 1 LLC | 10568 N 5900 WEST | HIGHLAND | UT | 84003 |
| 296 | DALE WARBURTON AND MARILYN WA AN INT | 795 E 350 NORTH | PLEASANT GROVE | UT | 84062 |
| 297 | DALEY, REX H \& SHARON L TEE | 463 E CENTER ST | LINDON | UT | 84042 |
| 298 | DALLIN, PAUL ET AL | 245 E 100 NORTH | OREM | UT | 84057 |
| 299 | DALTON, ORAL T TEE | 1040 N 60 EAST | AMERICAN FORK | UT | 84003 |
| 300 | DANA POINT LLC | 7611 JORDAN LANDING BLVD | WEST JORDAN | UT | 84084 |
| 301 | DANIEL, GERRY G \& SHERRY S JT | 1523 W 80 SOUTH | PLEASANT GROVE | UT | 84062 |
| 302 | DANIELS, MICHAEL \& BRENDA ET AN INT | 743 N HILL AV | PASADENA | CA | 91104 |
| 303 | DANIELS, STEVE | 8813 S REDWOOD RD \#C-2 | WEST JORDAN | UT | 84088 |
| 304 | DANKLEF, JAMES A \& JUDY A JT | 705 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 305 | DAVENPORT, KRISTEN | 576 W 1420 NORTH | PLEASANT GROVE | UT | 84062 |
| 306 | DAVIDGE, RUDOLPH | 2424 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 307 | DAVIS, AARON S \& MESHA M JT | 28 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 308 | DAVIS, CONNIE S TEE | 1036 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 309 | DAVIS, GAYLE N \& LORRAINE S | 1289 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 310 | DAVIS, JIM ET AL 1/2INT | 2296 N 180 WEST | PLEASANT GROVE | UT | 84062 |
| 311 | DAVIS, MARK | 758 S 400 EAST | OREM | UT | 84097 |
| 312 | DAVIS, RONALD L \& SUZETTE B JT | 2873 N 900 WEST | PLEASANT GROVE | UT | 84062 |
| 313 | DAVIS, SHIRL B TEE | 1342 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 314 | DAVIS, TONI KAY | 483 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 315 | DAY, DONALD E \& ELLA R JT | 1472 RENAISSANCE PL | PLEASANT GROVE | UT | 84062 |
| 316 | DAY, LEONA WOOTEN | 1422 N 230 WEST | OREM | UT | 84057 |
| 317 | DBT PROPERTIES LC | PO BOX 746 | PLEASANT GROVE | UT | 84062 |
| 318 | DBT PROPERTIES LC | 501 S MAIN ST | PLEASANT GROVE | UT | 84062 |
| 319 | DCW PROPERTIES LLC | 322 S 700 WEST | PLEASANT GROVE | UT | 84062 |
| 320 | DE GROFF, ROSS D \& MARY K JT | 799 N 400 WEST | LINDON | UT | 84042 |


| 321 | DE ROEST, LAWRENCE M \& EDNA P JT | 2356 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 322 | DE VINCENT DEVELOPMENT LLC | 1121 E 580 NORTH CIR | AMERICAN FORK | UT | 84003 |
| 323 | DEEGAN, DAVID A \& SUSAN K JT | 255 S 930 WEST | PLEASANT GROVE | UT | 84062 |
| 324 | DEEGAN, JACOB C | 792 N 350 WEST | LINDON | UT | 84042 |
| 325 | DEEP CREEK PROPERTIES INCORPORATED | 1084 E PACIFIC DR | AMERICAN FORK | UT | 84003 |
| 326 | DEMILLE, STEVEN D \& LYNDA D JT | 918 N 1420 WEST | PLEASANT GROVE | UT | 84062 |
| 327 | DENBOER, TYLER D \& ALLISON JT | 511 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 328 | DENTON, MARYLYN S | 778 N 40 EAST | LINDON | UT | 84042 |
| 329 | DEWITT, BRENT \& MICHELLE JT | 7005 WOLF RUN SHOALS RD | FAIRFAX STATION | VA | 22039 |
| 330 | DIMOND, DAVID H \& JUDY W JT | 9486 N 4000 WEST | CEDAR HILLS | UT | 84062 |
| 331 | DINEHART, JORDAN \& LAURENE JT | 293 E 1640 NORTH | PLEASANT GROVE | UT | 84062 |
| 332 | DIXON, TIMMOTHY H \& MELISSA JT | 948 E MURDOCK DR | PLEASANT GROVE | UT | 84062 |
| 333 | DMA 459 LLC | 3658 N RANCHO DR | LAS VEGAS | NV | 89130 |
| 334 | DMB INVESTMENT LLC | 250 BEECHWOOD DR \#120 | BOISE | ID | 83709 |
| 335 | DOERSCHLER, CAM R \& DONNIE L JT | 10 MOHAWK AV | CORTE MADERA | CA | 94925 |
| 336 | DOYLE, NYLE \& COLEEN TEE | 1225 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 337 | DOYLE, PAUL D \& MARY A ET AL | 879 E 200 SOUTH | PLEASANT GROVE | UT | 84062 |
| 338 | DRAKE, DENNIS H \& PHYLLIS M JT | 1250 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 339 | DRANEY, CYRIL L \& JEAN M | 3132 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 340 | DRYER, RYAN S \& MINDY H JT | 412 E 420 SOUTH | PLEASANT GROVE | UT | 84062 |
| 341 | DU PREEZ, ANTHONY J | 321 W 2660 NORTH | LEHI | UT | 84043 |
| 342 | DUCKETT, DUSTIN \& ARIANNE JT | 758 S 400 EAST | OREM | UT | 84097 |
| 343 | DUJARDIN, DANA | 9456 CANYON HEIGHTS DR | CEDAR HILLS | UT | 84062 |
| 344 | DUNCAN, ROSETTA M TEE | 1173 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 345 | DUNN, ERIC P \& KIMBERLY JT | 1116 W 3540 NORTH | PLEASANT GROVE | UT | 84062 |
| 346 | DURRANT, MICHAEL J | 45 SMITH LN | PLEASANT GROVE | UT | 84062 |
| 347 | EAST TEMPLE VIEW LLC | 607 CAMDEN PARK LN | DRAPER | UT | 84020 |
| 348 | EBS PROPERTIES L.C. | 65 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 349 | EDMONDS, RONALD D \& DEBRA A JT | 562 GLENDON WAY | PLEASANT GROVE | UT | 84062 |
| 350 | EDVALSON, BETH SMITH TEE | 975 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 351 | EDWARDS, JOSH \& KRISTY JT | 769 E 200 SOUTH | PLEASANT GROVE | UT | 84062 |
| 352 | EDWARDS, WILLIAM F \& CHERYL W JT | 522 W 2900 NORTH | PLEASANT GROVE | UT | 84062 |
| 353 | EGBERT, DENNIS W \& MARGARET B JT | 3365 N MAHOGANY DR | PLEASANT GROVE | UT | 84062 |
| 354 | EKINS, STANFORD R \& EVETTA F TIC | 9430 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 355 | ELDRIDGE, MARILYN L | 389 W 800 NORTH | LINDON | UT | 84042 |
| 356 | ELGUETA, JEORGE A ET AL | 587 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 357 | ELK RIDGE DEVELOPMENT INC | 7847 PHEASANT WOOD DR | SANDY | UT | 84093 |
| 358 | ELLIOTT, MURIEL M | 3881 W 9600 NORTH | PLEASANT GROVE | UT | 84062 |
| 359 | ELLIS, PRESTON C \& LYNETTE JT | 1411 W 2010 NORTH | PLEASANT GROVE | UT | 84062 |
| 360 | ELLISON, NATHAN \& BRIANNE JT | 1703 W 1060 NORTH | PLEASANT GROVE | UT | 84062 |
| 361 | ENOCH, JOSH C \& NICHOLE JT | 1497 W 80 SOUTH | PLEASANT GROVE | UT | 84062 |
| 362 | ERICKSEN, ALLEN CLEMENTS | 675 S 50 WEST | PLEASANT GROVE | UT | 84062 |
| 363 | ESCALANTE, ADRIAN | 1475 E MURDOCK DR | PLEASANT GROVE | UT | 84062 |
| 364 | EVANS, CLARK B \& SUSANN S JT | 128 N 200 EAST | OREM | UT | 84057 |
| 365 | EVANS, CLARK B \& SUSANN S ET TEE | 752 N LOCUST AV | PLEASANT GROVE | UT | 84062 |
| 366 | EVANS, KEITH C \& CLARK B ET A TEE | 702 E 990 SOUTH | PLEASANT GROVE | UT | 84062 |
| 367 | EVANS, MATTHEW | 175 N 1630 WEST | PLEASANT GROVE | UT | 84062 |
| 368 | EVERINGHAM, BRUCE \& LAURA JT | 1403 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 369 | EWELL, AARON K \& ANISA A JT | 1685 W 1100 NORTH | PLEASANT GROVE | UT | 84062 |
| 370 | EWELL, MERRILL R \& ALTA H TEE | 1475 W 1100 NORTH | PLEASANT GROVE | UT | 84062 |
| 371 | FAMILY FIRST FEDERAL CREDIT UNION | 175 E 200 SOUTH | OREM | UT | 84058 |
| 372 | FARNSWORTH, W DAVID \& SHAWNA JT | 1905 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 373 | FAUX, CRAIG \& SUSAN K JT | 680 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 374 | FAUX, DAVID M \& DORA C TEE | 676 E 900 SOUTH | PLEASANT GROVE | UT | 84062 |
| 375 | FENTON, BOYD D \& SHELLEY W JT | 1914 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 376 | FERRIS, KENNETH R \& SUSAN JT | 1205 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 377 | FIDELITY FUNDING COMPANY | 53 W ANGELO AV | SALT LAKE CITY | UT | 84115 |
| 378 | FINCH, TERI L | 682 E 900 SOUTH | PLEASANT GROVE | UT | 84062 |
| 379 | FINLAYSON, MERRILL P \& GENEAL JT | 1044 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 380 | FIRMAGE GROVE LC | 4700 S STATE ST | SALT LAKE CITY | UT | 84107 |
| 381 | FLADELAND, MARLYS M | PO BOX 806 | PLEASANT GROVE | UT | 84062 |
| 382 | FLAKE, NANCY J | 1783 W 1100 NORTH | PLEASANT GROVE | UT | 84062 |
| 383 | FLANARY, SHAWN R \& SHERYL A JT | 2774 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 384 | FLATT, CATHLEEN M \& MARVIN A TEE | 1100 E 40 NORTH | OREM | UT | 84097 |
| 385 | FLINDERS, DAVID W \& LISA L JT | 482 W 3300 NORTH | PLEASANT GROVE | UT | 84062 |


| 386 | FLINDERS, NEIL J \& JOAN D TEE | 4326 N 900 WEST | PLEASANT GROVE | UT | 84062 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 387 | FOOTE, ELWOOD E \& NELDA I ET TEE | 1067 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 388 | FORDHAM, TODD C \& LORI JT | 815 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 389 | FOUNDATIONS INSURANCE INC | 63 E STATE RD | PLEASANT GROVE | UT | 84062 |
| 390 | FOWLER, RICKIE J \& CLAUDETTE JT | 1068 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 391 | FOWLES, BARBARA N TEE | 442 N 600 EAST | PLEASANT GROVE | UT | 84062 |
| 392 | FOX, KYLE C | 576 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 393 | FOX, WADE \& KAYLEE JT | 3905 N 900 WEST | PLEASANT GROVE | UT | 84062 |
| 394 | FRAME, SUSAN \& CRAIG JT | 2551 N 860 WEST | PLEASANT GROVE | UT | 84062 |
| 395 | FRANDSEN, STEVEN R | 370 W 900 NORTH | PLEASANT GROVE | UT | 84062 |
| 396 | FRANK, LOUIS J \& DONNA J JT | PO BOX 991 | PLEASANT GROVE | UT | 84062 |
| 397 | FRATERNAL ORDER OF EAGLES PL GR ARIE | 220 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 398 | FREE FAMILY LIMITED PARTNERSHIP | 28 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 399 | FREE, W DUANE | 2316 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 400 | FREEBIRD GROUP INVESTMENTS L C | 1121 GROVE CREEK DR | PLEASANT GROVE | UT | 84062 |
| 401 | FREEMAN, JOHN J \& ANITA JT | 855 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 402 | FREEMAN, LESTER R \& NEVA TEE | 801 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 403 | FREEMAN, MATTHEW C | 1287 W 50 NORTH | PLEASANT GROVE | UT | 84062 |
| 404 | FREEMAN, SAMUEL R \& JOLENE JT | 829 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 405 | FRISBEE, JEANE L \& GERALD | 246 S 100 EAST | PLEASANT GROVE | UT | 84062 |
| 406 | FRYER, BRAD | 2702 N 900 WEST | PLEASANT GROVE | UT | 84062 |
| 407 | FRYER, KENNETH L \& JOAN H ET TEE | 624 E 500 NORTH | OREM | UT | 84097 |
| 408 | FUGAL, GUY L \& PAULA G | 590 W 1100 NORTH | PLEASANT GROVE | UT | 84062 |
| 409 | FUGAL, JOHN P \& JENS P TEE | 390 N MAIN ST | LINDON | UT | 84042 |
| 410 | FUGAL, JOSEPH M \& JOAN V JT | 1373 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 411 | FULLMER, JAMES ET AL | 1590 N 300 WEST | PROVO | UT | 84602 |
| 412 | G \& G INVESTMENTS L.C. | 5451 W 10180 NORTH | HIGHLAND | UT | 84003 |
| 413 | GAGON, JOSEPH A ET AL | 1580 E MURDOCK DR | PLEASANT GROVE | UT | 84062 |
| 414 | GARCIA, ROGELIO \& ANA M JT | 9788 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 415 | GARDBROS LLC | 2836 EDGEMONT DR | HENDERSON | NV | 89074 |
| 416 | GARFIELD, JEFFREY | 4251 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 417 | GARN, CLARK W \& JANET H JT | 407 N STATE ST | MORGAN | UT | 84050 |
| 418 | GARNER, GARY M \& SHERYL L JT | 1594 W 3300 NORTH | PLEASANT GROVE | UT | 84062 |
| 419 | GARNER, LAVAL F \& ROSE P JT | 984 S 1320 EAST | PLEASANT GROVE | UT | 84062 |
| 420 | GATEWAY FARMS PLEASANT GROVE LLC | 1067 W JERLING | HIGHLAND | UT | 84003 |
| 421 | GDJ PROPERTIES LLC | 754 W 700 SOUTH | PLEASANT GROVE | UT | 84062 |
| 422 | GENERAL CONSTRUCTION AND DEVELOPMENT | 1642 W 10 SOUTH | PLEASANT GROVE | UT | 84062 |
| 423 | GENERAL CONSTRUCTION AND DEVELOPMENT | 3214 N UNIVERSITY AV \#605 | PROVO | UT | 84604 |
| 424 | GENERAL CONSTRUCTION AND DEVELOPMENT | 1646 W 10 SOUTH | PLEASANT GROVE | UT | 84062 |
| 425 | GENERAL CONSTRUCTION AND DEVELOPMENT | 1634 W 10 SOUTH | PLEASANT GROVE | UT | 84062 |
| 426 | GIBB, DAVID R \& DIAN JT | 338 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 427 | GIBBY, ERIC A \& NATALIE M JT | 916 W 260 SOUTH | PLEASANT GROVE | UT | 84062 |
| 428 | GIBSON, TIMOTHY A \& ANNETTE L JT | 970 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 429 | GIFFORD, BRENN K \& ZULY C JT | 649 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 430 | GIFFORD, CAROL LYN | 747 W 1920 NORTH | PLEASANT GROVE | UT | 84062 |
| 431 | GIFFORD, DAVID O | 600 PONDEROSA DR | ALPINE | UT | 84004 |
| 432 | GIFFORD, N PAUL | 366 S BENCH RD | ALPINE | UT | 84004 |
| 433 | GILES, VERNON | 903 E ROUTE 66 \#D | GLENDORA | CA | 91740 |
| 434 | GILLMAN, JULIE A | 468 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 435 | GIRARD, NANCY S | 725 W 4430 NORTH | PLEASANT GROVE | UT | 84062 |
| 436 | GIRARD, NORMA F ET AL | 790 N 400 WEST | LINDON | UT | 84042 |
| 437 | GLOBAL COATINGS INC | PO BOX 338 | PLEASANT GROVE | UT | 84062 |
| 438 | GODFREY, GARY J \& MARY F JT | 1180 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 439 | GONZALES, RONALD F \& EILEEN W JT | 410 N 800 EAST | PLEASANT GROVE | UT | 84062 |
| 440 | GOODMAN, JOHN M \& VICKI C JT | 500 E 200 SOUTH | PLEASANT GROVE | UT | 84062 |
| 441 | GOODMAN, JOLYNNE \& MARK | 1750 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 442 | GOODRICH, ERIC \& HEIDI JT | 9314 CANYON RD | CEDAR HILLS | UT | 84062 |
| 443 | GOODWILL, JOHN \& SUSAN | 79 N 1620 WEST | PLEASANT GROVE | UT | 84062 |
| 444 | GOODWIN, BRUCE L \& VERA C JT | 107 S 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 445 | GORDON, KEN D \& LINDA E JT | 4026 CENTENNIAL | CEDAR HILLS | UT | 84062 |
| 446 | GOTCHER, DAVID M \& AMY M JT | 2007 TUSCANY WAY | PLEASANT GROVE | UT | 84062 |
| 447 | GRAHAM, W F \& EULA B | 1375 W 1100 NORTH | PLEASANT GROVE | UT | 84062 |
| 448 | GRAN CAMPBELL ENTERPRISES LLC ET AL | 87 W 560 SOUTH | OREM | UT | 84058 |
| 449 | GRANTHAM, JERRY K \& STACI L JT | 1347 N MANILA CT | PLEASANT GROVE | UT | 84062 |
| 450 | GREBE, VICKI D \& BRANDON ET AL | 2146 N 1300 WEST | PLEASANT GROVE | UT | 84062 |


| 451 | GREEN GROVE APARTMENTS LIMITED PARTN | 1127 GROVE CREEK DR | PLEASANT GROVE | UT | 84062 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 452 | GREEN, KENDALL T \& MARJORIE JT | 1560 E MURDOCK DR | PLEASANT GROVE | UT | 84062 |
| 453 | GREENFIELD INVESTMENTS LC | PO BOX 1239 | OREM | UT | 84059 |
| 454 | GRIFFITH, LANE F ET AL | 424 N 2000 WEST | PLEASANT GROVE | UT | 84062 |
| 455 | GROVE BUSINESS CENTER I LLC | 845 OAK GROVE AV \#210 | FARMINGTON | UT | 84025 |
| 456 | GROVER, DANIEL R \& JENNI L JT | 1484 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 457 | GUERNSEY, MILDRED B TEE | 840 GROVE CREEK DR | PLEASANT GROVE | UT | 84062 |
| 458 | HACIENDA PROPERTIES LIMITED PARTNERS | PO BOX 6629 | ORANGE | CA | 92863 |
| 459 | HACK, RONALD L \& GINGER TEE | 465 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 460 | HADERLIE, BRETT F \& BELINDA | 8319 E PORTOBELLO AV | MESA | AZ | 85212 |
| 461 | HAILSTONE, MATTHEW D \& HEIDI JT | 1023 W 500 NORTH | PLEASANT GROVE | UT | 84062 |
| 462 | HAIR, DALE \& MARY TEE | 205 E STATE RD | PLEASANT GROVE | UT | 84062 |
| 463 | HAIR, DALE W \& MARY W TEE | 524 N 950 EAST | OREM | UT | 84097 |
| 464 | HALDIMAN, JEFFREY M \& DIANE L JT | 490 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 465 | HALECK, JARED C \& EMILY JT | 1529 W 80 SOUTH | PLEASANT GROVE | UT | 84062 |
| 466 | HALES, EDWARD | 79 E 700 SOUTH | PLEASANT GROVE | UT | 84062 |
| 467 | HALL, JOEL S \& JOYCE A JT | 1176 W 2100 NORTH | PLEASANT GROVE | UT | 84062 |
| 468 | HALL, MACK R \& LESLIE B JT | 1990 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 469 | HALL, PHILLIP M \& MARY-JO JT | 4407 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 470 | HALL, ROBERT \& JOYCE JT | 7575 N 4650 WEST | PLEASANT GROVE | UT | 84062 |
| 471 | HALL, ROBYN VEE | 1843 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 472 | HALLAM, GEORGE W \& SHARON F JT | PO BOX 746 | PLEASANT GROVE | UT | 84062 |
| 473 | HALLIDAY, MELVIN \& LINDA | 122 N 500 WEST \#48-1 | BLANDING | UT | 84511 |
| 474 | HAMMOND, CLARK \& SHAWNA JT | 1587 W 1010 NORTH | PLEASANT GROVE | UT | 84062 |
| 475 | HAMMOND, GAIL C \& IDA J TEE | 1879 W 1100 NORTH | PLEASANT GROVE | UT | 84062 |
| 476 | HAMMOND, VICTOR W \& LAURA A TEE | 140 S 950 EAST | PLEASANT GROVE | UT | 84062 |
| 477 | HANKS, DONALD S \& DEBRA L TEE | 3618 N 900 WEST | PLEASANT GROVE | UT | 84062 |
| 478 | HANSEN, HOLDEN SHANE ET AL | 1035 QUEENS DR | AMERICAN FORK | UT | 84003 |
| 479 | HANSEN, JOHN L \& SANDRA S TEE | 540 S MAIN ST | PLEASANT GROVE | UT | 84062 |
| 480 | HANSEN, JOHN L \& SANDRA S TEE | 1035 QUEENS DR | AMERICAN FORK | UT | 84003 |
| 481 | HANSEN, KENT J \& ROBIN JT | 1920 N 750 WEST | PLEASANT GROVE | UT | 84062 |
| 482 | HANSEN, KEVIN S \& JULIE D JT | 1765 GARDEN DR | PLEASANT GROVE | UT | 84062 |
| 483 | HANSEN, RICHARD G \& SYLVIA S JT | 1045 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 484 | HANSON, STANLEY C TEE | PO BOX 564 | PLEASANT GROVE | UT | 84062 |
| 485 | HARDMAN, DOUGLAS L \& MARIE S JT | 1791 N 1200 WEST | PLEASANT GROVE | UT | 84062 |
| 486 | HARDMAN, GARY R \& BONNIE K JT | 4278 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 487 | HARMAN, LEON W TEE | 199 1ST ST \#212 | LOS ALTOS | CA | 94022 |
| 488 | HARMER, APRIL L H | 1380 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 489 | HARR JOHN P SENIOR PROPERTIES L.C. | 590 W STATE RD | PLEASANT GROVE | UT | 84062 |
| 490 | HARRIS, M ADAM \& ANGELA JT | 1832 N 900 WEST | PLEASANT GROVE | UT | 84062 |
| 491 | HARRIS, NATALIE B | 32 W 725 NORTH | LINDON | UT | 84042 |
| 492 | HARRIS, R CARL \& MELANIE F JT | 2046 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 493 | HARSHBERGER, TAMARA | 159 S PLEASANT GROVE BLVD \#14 | PLEASANT GROVE | UT | 84062 |
| 494 | HART, DAVID K \& LARAYNE W JT | 2520 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 495 | HARTLEY, MELISSA S | 220 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 496 | HARVEY LAND COMPANY | 9610 WINCHESTER DR | CEDAR HILLS | UT | 84062 |
| 497 | HARVEY, DAVID C \& DIXIE R TEE | 2806 N 1450 WEST | PLEASANT GROVE | UT | 84062 |
| 498 | HARVEY, DONALD L \& HERMINE R TEE | 688 E 600 NORTH | PROVO | UT | 84606 |
| 499 | HARVEY, JEFFREY CHRISTOPHER | 3331 N 1456 WEST | PLEASANT GROVE | UT | 84062 |
| 500 | HARVEY, SHIANN \& JAYSON | 1767 GARDEN DR | PLEASANT GROVE | UT | 84062 |
| 501 | HARVEY, STANLEY D \& JODI ET A TEE | 1244 N 200 WEST | PLEASANT GROVE | UT | 84062 |
| 502 | HARVIE, CHAD | 952 W 270 SOUTH \#302 | PLEASANT GROVE | UT | 84062 |
| 503 | HASLER, HOLLY P \& BLAIR JT | 1092 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 504 | HATCH, JERALD T \& SHAUNA N JT | 85 S 300 WEST | LINDON | UT | 84042 |
| 505 | HAYES, JANETH \& RICHARD JT | 1663 W 1060 NORTH | PLEASANT GROVE | UT | 84062 |
| 506 | HAYMOND, BRYCE M \& RAVEN V TEE | 929 W 670 SOUTH \#9 | PLEASANT GROVE | UT | 84062 |
| 507 | HAYNIE, CORRINE L | 555 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 508 | HEADMAN, CHARLES L \& DIANNE C JT | 4628 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 509 | HEALY, JON W \& NAN T TEE | 1275 MURDOCK DR | AMERICAN FORK | UT | 84003 |
| 510 | HEATON, MICHAEL \& ERIN JT | 210 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 511 | HEBBERT, FRANK M \& NAOMI P TEE | 1224 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 512 | HEINER, KEVIN \& GENAE JT | PO BOX 400 | PLEASANT GROVE | UT | 84062 |
| 513 | HEINER, KEVIN M \& GENAE D JT | 2325 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 514 | HEINZ E AND IRMGARD S GERSTLE LLC | PO BOX 165 | MILLBRAE | CA | 94030 |
| 515 | HEINZ, TIMOTHY D \& CARLYN N JT | 952 W 270 SOUTH \#301 | PLEASANT GROVE | UT | 84062 |


| 516 | HEMMERT, JAMES C | PO BOX 1311 | PROVO | UT | 84603 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 517 | HENDERSON, GARY D \& KATHRYN A JT | 129 S 950 EAST | PLEASANT GROVE | UT | 84062 |
| 518 | HENDRICKS, ERIN | 935 S OREM BLVD | OREM | UT | 84058 |
| 519 | HENDRICKSON, WILLIAM R \& DEBR JT | 231 E 200 NORTH | PROVO | UT | 84606 |
| 520 | HENRICHSEN, CAROL A TEE | 812 E 200 SOUTH | PLEASANT GROVE | UT | 84062 |
| 521 | HENRY, DARRIN T \& JOY L JT | 86 S 800 EAST | PLEASANT GROVE | UT | 84062 |
| 522 | HEP DEVELOPMENT LLC | 4366 W SAM WHITE LA | PLEASANT GROVE | UT | 84062 |
| 523 | HEP DEVELOPMENT LLC ET AL | 6795 S 300 WEST | MIDVALE | UT | 84047 |
| 524 | HEPWORTH, LISA | 652 W 2705 \#330 | PLEASANT GROVE | UT | 84062 |
| 525 | HERZOG, JOHN M \& KRYSTAL J JT | 1317 W 600 NORTH | PLEASANT GROVE | UT | 84062 |
| 526 | HESS, MYRNA \& DOYLE G TEE | PO BOX 2710 | WENDOVER | NV | 89883 |
| 527 | HEWETT, JONATHAN | 9895 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 528 | HEWETT, JONATHAN \& EVE JT | 9875 CANYON RD | CEDAR HILLS | UT | 84062 |
| 529 | HIATT, JOHN S \& CYNTHIA N JT | 1435 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 530 | HICKS, CORAL V | 1030 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 531 | HILTON, AARON D \& DESERY S JT | 1405 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 532 | HILTON, BRANDON \& DEBORAH JT | 1105 W 3540 NORTH | PLEASANT GROVE | UT | 84062 |
| 533 | HILTON, KELLEN A | 1396 N 500 EAST | PLEASANT GROVE | UT | 84062 |
| 534 | HINOJOS, SYLVIA G | 810 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 535 | HMC INVESTMENT CORPORATION | 551 E STATE RD \#101 | AMERICAN FORK | UT | 84003 |
| 536 | HOKI, MURRAY M \& MARTHA F JT | 1609 N 900 WEST | PLEASANT GROVE | UT | 84062 |
| 537 | HOLMAN, A WAYNE \& STELLA G ET AL | 6043 W 9740 NORTH | HIGHLAND | UT | 84003 |
| 538 | HOLMAN, MICHAEL W \& GAY C JT | 1111 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 539 | HOLMES, NATHAN | 905 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 540 | HOLMSTEAD, HAL E \& KATHRYN S TEE | 1070 E 700 NORTH | AMERICAN FORK | UT | 84003 |
| 541 | HOLMSTEAD, JAY R \& SONDRA JT | 405 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 542 | HOLMSTEAD, ROBB L \& KATHRYN M JT | 2155 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 543 | HOMER, RAYMOND W \& OLGA J TEE | 408 N 700 EAST | PLEASANT GROVE | UT | 84062 |
| 544 | HOMETOWN PROFESSIONALS LC | 330 S MAIN ST | PLEASANT GROVE | UT | 84062 |
| 545 | HONE, CAMILLE | 856 W 260 SOUTH | PLEASANT GROVE | UT | 84062 |
| 546 | HONE, DENISE | 1467 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 547 | HONE, LLOYD W TEE | 319 E STATE RD | PLEASANT GROVE | UT | 84062 |
| 548 | HORELICA, SHAWN L \& JENNIFER JT | 1921 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 549 | HORMAN, CHARLES H ET AL TEE | 3125 S WHITEWATER DR | SALT LAKE CITY | UT | 84117 |
| 550 | HORTON, TODD W \& MARDICA JT | 376 N 300 WEST | AMERICAN FORK | UT | 84003 |
| 551 | HORTT, MARTIN A \& DEBRA M JT | 933 N 1420 WEST | PLEASANT GROVE | UT | 84062 |
| 552 | HOUSTON, DANNY L \& GAYLE L TEE | 84 S 1100 EAST | AMERICAN FORK | UT | 84003 |
| 553 | HOUSTON, VAN L \& JANEAN JT | 106 S 1100 EAST | AMERICAN FORK | UT | 84003 |
| 554 | HOWARD, DON \& RAMONA JT | 980 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 555 | HOWARD, KENNETH S \& KIMBERLI JT | 1319 W 870 NORTH | PLEASANT GROVE | UT | 84062 |
| 556 | HUFF, DENNIS E | 890 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 557 | HUFF, MARYLYN G ET AL | 4252 STRATUS ST | SALT LAKE CITY | UT | 84118 |
| 558 | HULLINGER, DENNIS J \& MARIETT JT | 637 W 4000 NORTH | PLEASANT GROVE | UT | 84062 |
| 559 | HUMPHERYS, KRISTEN | 1369 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 560 | HUNDEGGER PROPERTIES LC | 9271 N 2683 EAST ALPINE LOOP | PROVO | UT | 84604 |
| 561 | HUNSAKER, JESSE L \& LISA JT | 1364 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 562 | HUNT, DEBRA H TEE | 2252 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 563 | HUNT, JEFFREY D \& JENNIFER D JT | 1548 N 150 EAST | PLEASANT GROVE | UT | 84062 |
| 564 | HUNTSMAN, BLAINE H \& JOYCE N JT | 2390 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 565 | HUNTSMAN, NORAH TEE | 2498 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 566 | IRWIN, BRIAN F \& ANNE K JT | 1428 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 567 | IVIE, DEANNA R TEE | 4596 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 568 | IVIE, JOSEPH M \& JILL L JT | 870 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 569 | IVORY DEVELOPMENT LLC | 978 WOODOAK LN | SALT LAKE CITY | UT | 84117 |
| 570 | IVORY HOMES LTD | 970 WOODOAK LN | SALT LAKE CITY | UT | 84117 |
| 571 | JA OGDEN INC | 285 S PINEVIEW DR | ALPINE | UT | 84004 |
| 572 | JACKSON, CLINTON R \& RUTH C | 632 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 573 | JACKSON, JEFFERY J \& PATTI S JT | 664 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 574 | JACOBS, JERALD | 10010 N 4800 WEST | AMERICAN FORK | UT | 84003 |
| 575 | JAKEMAN, JOHN K \& DUELLA O ET TEE | 901 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 576 | JALS \#2 LLC | 8070 S 3528 WEST | WEST JORDAN | UT | 84088 |
| 577 | JAMES, LANCE \& KIMBERLY JT | 622 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 578 | JAMISON, BARRETT T \& MOLLY A JT | 511 MOUNTAIN CREST RD | DUARTE | CA | 91010 |
| 579 | JARRETT, MARK D \& TERESA D JT | 970 S 500 EAST | PLEASANT GROVE | UT | 84062 |
| 580 | JARVIS, MARK G | 166 S 60 WEST | OREM | UT | 84058 |


| 581 | JD STEEL CO INC | PO BOX 18009 | PHOENIX | AZ | 85005 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 582 | JDC DESIGN LLC | 1024 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 583 | JEFFERY, DUANE E \& KAYE W JT | 715 E 875 NORTH | AMERICAN FORK | UT | 84003 |
| 584 | JENKINS, ERYN C \& BRADLEY G JT | 95 S 850 EAST | PLEASANT GROVE | UT | 84062 |
| 585 | JENSEN, LUCILLE TEE | 1588 W 1010 NORTH | PLEASANT GROVE | UT | 84062 |
| 586 | JENSEN, SARA H ET AL | 9707 ROYAL RED RD | CEDAR HILLS | UT | 84062 |
| 587 | JENSEN, TOMIE | 7301 BAYMEADOWS MAILSTOP JACB31 WAY | JACKSONVILLE | FL | 32256 |
| 588 | JEPPERSON, DENNIS G \& KATHRYN TEE | 1855 W 1100 NORTH | PLEASANT GROVE | UT | 84062 |
| 589 | JEPPSON, ARNOLD M \& MAY M JT | 1485 E 300 NORTH | AMERICAN FORK | UT | 84003 |
| 590 | JEPPSON, BRIAN C | 1791 N 350 WEST | PLEASANT GROVE | UT | 84062 |
| 591 | JOGODA L.L.C. ET AL | 335 E 1300 SOUTH | OREM | UT | 84097 |
| 592 | JOHN ANDERSON FAMILY LIMITED PARTNER | 1050 S 175 EAST | BURLEY | ID | 83318 |
| 593 | JOHN HANCOCK CHARTER SCHOOL | 125 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 594 | JOHNSEN, NORMA E \& WILLIAM J TEE | 2783 N 900 WEST | PLEASANT GROVE | UT | 84062 |
| 595 | JOHNSON, BRETT M \& CALLIE K JT | 1492 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 596 | JOHNSON, DAMON L \& KELLEY K JT | 1009 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 597 | JOHNSON, DAVID N \& MARY L JT | 822 E 540 SOUTH | SALEM | UT | 84653 |
| 598 | JOHNSON, DEVIN | 33 E SIENA DR | PLEASANT GROVE | UT | 84062 |
| 599 | JOHNSON, DONALD C SUCTEE | 2390 W 2200 NORTH | LEHI | UT | 84043 |
| 600 | JOHNSON, FRED M TEE | 1148 NATHANIEL DR | PLEASANT GROVE | UT | 84062 |
| 601 | JOHNSON, FRED M TEE | 289 N 300 EAST | OREM | UT | 84057 |
| 602 | JOHNSON, JAY DREW ET AL | 582 W 850 NORTH | PLEASANT GROVE | UT | 84062 |
| 603 | JOHNSON, JOEL R \& CATHY P JT | 1286 MURDOCK DR | AMERICAN FORK | UT | 84003 |
| 604 | JOHNSON, JOHN V | 321 E STATE RD \#10 | AMERICAN FORK | UT | 84003 |
| 605 | JOHNSON, LARRY A \& SALLY JT | 1891 GLENDON CIR | PLEASANT GROVE | UT | 84062 |
| 606 | JOHNSON, MARLIN D \& DIANE B JT | 2251 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 607 | JOHNSON, MERN D \& LORA JT | 381 E 300 SOUTH | PLEASANT GROVE | UT | 84062 |
| 608 | JOHNSON, MILTON G \& MILDRED F TEE | 345 W 1600 SOUTH | OREM | UT | 84058 |
| 609 | JOHNSON, MILTON K \& GINNY O JT | 929 W 670 SOUTH \#4 | PLEASANT GROVE | UT | 84062 |
| 610 | JOHNSON, NED L \& LINDA W JT | 570 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 611 | JOHNSON, ROBERT M | 1275 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 612 | JOHNSON, SHAD L \& AMY L JT | 433 S 300 EAST | PLEASANT GROVE | UT | 84062 |
| 613 | JOHNSON, TERRANCE B \& MADGE E JT | 1600 OLD HIGHWAY 99 | GRANTS PASS | OR | 97526 |
| 614 | JOHNSTON, CLAY R \& DEBY C JT | 1979 TUSCANY WAY | PLEASANT GROVE | UT | 84062 |
| 615 | JOHNSTON, ERIC S \& GREG | 610 W 800 NORTH | PLEASANT GROVE | UT | 84062 |
| 616 | JOHNSTON, ERIC S \& GREG | 805 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 617 | JOLLEY, ROBERT S \& AMY O JT | 343 W 1700 SOUTH | OREM | UT | 84058 |
| 618 | JONES, AARON H \& AMY E JT | 3611 N 1590 WEST | PLEASANT GROVE | UT | 84062 |
| 619 | JONES, GERALD D \& MONICA L JT | 1338 GARDEN DR | PLEASANT GROVE | UT | 84062 |
| 620 | JONES, LENNIS A \& PATRICIA A JT | 1685 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 621 | JONES, LOGAN R \& ADELE M JT | 3573 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 622 | JONES, RANDALL \& AMY K | 35 S 100 EAST | PLEASANT GROVE | UT | 84062 |
| 623 | JONES, RONALD C \& SUSAN P JT | 878 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 624 | JORGENSEN, HAROLD M \& MAURINE TEES | 1080 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 625 | JP PROPERTIES | PO BOX 236 | PLEASANT GROVE | UT | 84062 |
| 626 | JUDKINS, AARON \& MARCI JT | 2033 N TUSCANY WAY | PLEASANT GROVE | UT | 84062 |
| 627 | K \& L GURR HOLDINGS LLC | 360 E 100 SOUTH | PLEASANT GROVE | UT | 84062 |
| 628 | KAESMEYER, DANIEL E \& SUSAN M JT | 110 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 629 | KALLAS, JEREMY J | 929 W 670 SOUTH \#12 | PLEASANT GROVE | UT | 84062 |
| 630 | KEELER, SHIREE | 159 S PLEASANT GROVE BLVD \#18 | PLEASANT GROVE | UT | 84062 |
| 631 | KEETCH, BRENT A \& SUZANNE S JT | 1730 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 632 | KEETCH, GARY V \& DEANNE C JT | 1047 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 633 | KELLY, GREG \& NATALIE JT | 2578 N 860 WEST | PLEASANT GROVE | UT | 84062 |
| 634 | KENDALL, ALAN R \& LORA L TEE | 2525 N 860 WEST | PLEASANT GROVE | UT | 84062 |
| 635 | KERR, ANN T | 1378 E NORTH POND CIR | MAPLETON | UT | 84664 |
| 636 | KERR, BRIAN J \& AMY D JT | 1455 N 530 WEST | PLEASANT GROVE | UT | 84062 |
| 637 | KERR, JOHN R \& KARI JT | 1431 W 3300 NORTH | PLEASANT GROVE | UT | 84062 |
| 638 | KHATCHADOURIAN, MOVSES \& GIGI JT | 1695 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 639 | KIESSLING, GERD | 81 BENSON WAY | SANDY | UT | 84070 |
| 640 | KILLPACK, SHIRLEY | PO BOX 1132 | PLEASANT GROVE | UT | 84062 |
| 641 | KIMBAL, GLORIA J \& MITCH ET A JT | 806 W 2800 NORTH | PLEASANT GROVE | UT | 84062 |
| 642 | KING, KEVIN \& SHAUNA L JT | 3295 N CANYON RD | PROVO | UT | 84604 |
| 643 | KING, KORMAN \& KRISTY | 1678 N 70 EAST | PLEASANT GROVE | UT | 84062 |
| 644 | KIRK, STEPHEN L \& NANCY L JT | 983 S 1320 EAST | PLEASANT GROVE | UT | 84062 |
| 645 | KJJ LCC | 2004 COUNTRY DR | LEHI | UT | 84005 |


| 646 | KLOEY'S COVE LLC | 36 RED PINE DR | ALPINE | UT | 84004 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 647 | KNAPTON, LISA CHRISTINE ET AL | 1807 GARDEN DR | PLEASANT GROVE | UT | 84062 |
| 648 | KOEHLER, BRYAN F \& MARILYNN | 2532 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 649 | KOFFORD, JERALD D \& UNA L JT | 1476 RENAISSANCE PL | PLEASANT GROVE | UT | 84062 |
| 650 | KOHLER, BUD W \& GLENNA E TEE | 2150 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 651 | KRAVET, DANIEL ET AL | 9860 N CANYON DR | PLEASANT GROVE | UT | 84062 |
| 652 | KRISER HOMES \& COMMUNITIES INC | 497 S 2220 WEST \#102 | PLEASANT GROVE | UT | 84062 |
| 653 | KRISER HOMES \& COMMUNITIES INC | 497 S 2220 WEST \#201 | PLEASANT GROVE | UT | 84062 |
| 654 | KRISER HOMES \& COMMUNITIES INC | 496 S 2150 WEST \#201 | PLEASANT GROVE | UT | 84062 |
| 655 | KRISER HOMES \& COMMUNITIES INC | 125 E MAIN ST \#215 | AMERICAN FORK | UT | 84003 |
| 656 | KRISER HOMES \& COMMUNITIES INC | PO BOX 395 | AMERICAN FORK | UT | 84003 |
| 657 | KRISER HOMES \& COMMUNITIES INC | 926 W 1420 SOUTH | PAYSON | UT | 84651 |
| 658 | KRISER HOMES \& COMMUNITIES INC | 410 N 2000 WEST | PLEASANT GROVE | UT | 84062 |
| 659 | KRISER HOMES \& COMMUNITIES INC | 497 S 2220 WEST \#303 | PLEASANT GROVE | UT | 84062 |
| 660 | KRISER HOMES \& COMMUNITIES INC | 496 S 2150 WEST \#202 | PLEASANT GROVE | UT | 84062 |
| 661 | KRISER HOMES \& COMMUNITIES INC | 496 S 2150 WEST \#204 | PLEASANT GROVE | UT | 84062 |
| 662 | KRISER HOMES \& COMMUNITIES INC | 9055 S 1300 EAT \#110 | SANDY | UT | 84094 |
| 663 | KRISER HOMES \& COMMUNITIES INC | 496 S 2150 WEST | PLEASANT GROVE | UT | 84062 |
| 664 | KRISER HOMES \& COMMUNITIES INC | 40270 JACINTO WAY | PALMDALE | CA | 93551 |
| 665 | KRISER HOMES \& COMMUNITIES INC | 1000 S 1000 EAST | MAPLETON | UT | 84664 |
| 666 | KRISER HOMES \& COMMUNITIES INC | 496 S 2150 WEST \#102 | PLEASANT GROVE | UT | 84062 |
| 667 | KRISER HOMES \& COMMUNITIES INC | 497 S 2220 WEST \#304 | PLEASANT GROVE | UT | 84062 |
| 668 | KRISER HOMES \& COMMUNITIES INC | 3383 BEAR CANYON LN | CEDAR HILLS | UT | 84062 |
| 669 | KROHN, KRISTOFFER A \& KALENN JT | 3214 N UNIVERSITY AV \#116 | PROVO | UT | 84604 |
| 670 | KUMMER, KARL J TEE | 85 E 1500 SOUTH | OREM | UT | 84058 |
| 671 | LAD ENTERPRISES L.C. | 787 N 400 EAST | LINDON | UT | 84042 |
| 672 | LAD ENTERPRISES L.C. ET AL | 127 S 500 EAST \#310 | SALT LAKE CITY | UT | 84102 |
| 673 | LAKE CITY HOLDINGS LLC | 6148 W 9680 NORTH | HIGHLAND | UT | 84003 |
| 674 | LAMBERT, CHARLES P \& BETTY A JT | 1841 W 1100 NORTH | PLEASANT GROVE | UT | 84062 |
| 675 | LAND WALKER LTD | PO BOX 171720 | SAN ANTONIO | TX | 78217 |
| 676 | LANDCO DEVELOPMENT INC | 1210 E 930 NORTH | PROVO | UT | 84604 |
| 677 | LANE, ELDWIN K \& ANNA B JT | 2687 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 678 | LARSEN ACRES L.C. | 1146 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 679 | LARSEN, ARTALEE T | 864 N 360 EAST | AMERICAN FORK | UT | 84003 |
| 680 | LARSEN, ELIZABETH | 993 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 681 | LARSEN, STEVEN T \& ELIZABETH JT | 993 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 682 | LARSON, BRYON \& SUSANN JT | 4051 W 9820 NORTH | CEDAR HILLS | UT | 84062 |
| 683 | LARSON, CRAIG S \& JENNIFER S JT | 665 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 684 | LARSON, DE LOY \& RAYE ET AL TEE | 225 E STATE RD | PLEASANT GROVE | UT | 84062 |
| 685 | LARSON, JON W \& HEATHER M JT | 759 GROVE CREEK DR | PLEASANT GROVE | UT | 84062 |
| 686 | LASER, HEATHER A | 518 S 2150 WEST \#303 | PLEASANT GROVE | UT | 84062 |
| 687 | LAW, KENNETH A \& FERN JT | 150 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 688 | LAYCOCK, CORY E | 648 N 1010 WEST | PLEASANT GROVE | UT | 84062 |
| 689 | LEADING TECHNOLOGY DEVELOPMENT LLC | 444 N 7200 WEST | MENDON | UT | 84325 |
| 690 | LEAVITT, JEFFREY W | 786 W 4230 NORTH | PLEASANT GROVE | UT | 84062 |
| 691 | LEAVITT, KENNETH P \& LUCILLE JT | 374 S 420 EAST | PLEASANT GROVE | UT | 84062 |
| 692 | LEAVITT, MELVIN W \& PEGGY J | 2693 N 1200 EAST | LEHI | UT | 84043 |
| 693 | LEETHAM, STEPHEN C \& DEANNA TEE | 1317 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 694 | LEGACY PROPERTIES AND INVESTMENTS L. | 1342 W STATE RD | PLEASANT GROVE | UT | 84062 |
| 695 | LEGACY PROPERTIES AND INVESTMENTS LC | 1402 W STATE RD | PLEASANT GROVE | UT | 84062 |
| 696 | LEICO PROPERTIES LLC | 50 N 1300 EAST | PLEASANT GROVE | UT | 84062 |
| 697 | LEONARD, HAL A | 1420 E 300 NORTH | AMERICAN FORK | UT | 84003 |
| 698 | LEONARD, ROBERT H \& ROBERT H | 2221 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 699 | LETHBRIDGE, BURTON ALLEN | 950 S 1500 EAST | PLEASANT GROVE | UT | 84062 |
| 700 | LEVIN, ALFRED \& EDELTRAUD B TEE | 3939 W 9600 NORTH | CEDAR HILLS | UT | 84062 |
| 701 | LEWIS, KIMBALL U \& MYRNA JT | PO BOX 539 | MIDVALE | UT | 84047 |
| 702 | LEWIS, MARY ELLEN | 270 N 900 WEST | PROVO | UT | 84601 |
| 703 | LI, ELSA | 475 S 1230 WEST | OREM | UT | 84058 |
| 704 | LIAHONA FOUNDATION | 801 N 300 EAST | PLEASANT GROVE | UT | 84062 |
| 705 | LINCOLN ACADEMY INCORPORATED | 1582 W 3300 NORTH | PLEASANT GROVE | UT | 84062 |
| 706 | LINDBERG, DENISE | 868 W 260 SOUTH | PLEASANT GROVE | UT | 84062 |
| 707 | LINDSTROM, JEFFREY P ET AL DBA | PO BOX 236 | PLEASANT GROVE | UT | 84062 |
| 708 | LINDSTROM, JOHN P \& SARA H TEE | 1880 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 709 | LINEBAUGH, JOHN W \& CAROL B TEE | 2682 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 710 | LISTON, BETTU M \& CLAY M TEE | 921 W 1100 NORTH | PLEASANT GROVE | UT | 84062 |


| 711 | LITTLE, VERNON | 2897 N 900 WEST | PLEASANT GROVE | UT | 84062 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 712 | LLOYD, KALYN L \& JEANNE M JT | 407 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 713 | LOCKE, CHARESE | 868 W 4230 NORTH | PLEASANT GROVE | UT | 84062 |
| 714 | LOCKHART NANCE, ELIZABETH ET AL | 1830 N 820 WEST | PLEASANT GROVE | UT | 84062 |
| 715 | LONE PEAK DEVELOMENT PARTNERS LLC | 38 RED PINE DR | ALPINE | UT | 84004 |
| 716 | LONE PEAK DEVELOPMENT PARTNERS LLC | 688 W 2760 NORTH | PLEASANT GROVE | UT | 84062 |
| 717 | LONE PEAK DEVELOPMENT PARTNERS LLC | 583 S 900 WEST \#11-303 | PLEASANT GROVE | UT | 84062 |
| 718 | LONE PEAK DEVELOPMENT PARTNERS LLC | 1140 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 719 | LONE PEAK DEVELOPMENT PARTNERS LLC | 1015 W 425 SOUTH | LEHI | UT | 84043 |
| 720 | LONE PEAK DEVELPMENT PARTNERS LLC | 6072 W 11400 NORTH | HIGHLAND | UT | 84003 |
| 721 | LONG, DARRIN | 399 E STATE RD | PLEASANT GROVE | UT | 84062 |
| 722 | LONG, MYRON | 3687 AVANYU CT | CEDAR HILLS | UT | 84062 |
| 723 | LONGMAN, JOHN L \& GEORGANN JT | 4516 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 724 | LOSEE, BARBARA J \& FLOYD J JT | 704 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 725 | LOVE, JAMES L | 1791 GARDEN DR | PLEASANT GROVE | UT | 84062 |
| 726 | LOWDER, TRAVIS H \& DANIEL B ET AL | 2230 N UNIVERSITY PKY \#7A | PROVO | UT | 84604 |
| 727 | LOWE, LYNETTE \& KENNETH J JT | 1295 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 728 | LUKE, JOHNEY D | 1050 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 729 | LUKE, MARJORIE \& MARGENE JT | 1197 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 730 | LUKER, DAN R \& DAWN JT | 37 E 700 SOUTH | PLEASANT GROVE | UT | 84062 |
| 731 | LUND, TROY R \& JACQUE L JT | 468 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 732 | LUNDIN, JOHN L ET AL | 1052 E 50 SOUTH | AMERICAN FORK | UT | 84003 |
| 733 | LUU L.L.C. | 426 E STATE RD | PLEASANT GROVE | UT | 84062 |
| 734 | LUU, VINH \& HUNG T | 789 N 350 WEST | LINDON | UT | 84042 |
| 735 | LYTLE, JOSHUA | 347 MILLCREEK RD | PLEASANT GROVE | UT | 84062 |
| 736 | M \& M MORRIS PROPERTIES LC | 3599 LITTLE ROCK DR | PROVO | UT | 84604 |
| 737 | MAC NEIL, STEPHEN M | 11135 N 5730 WEST | HIGHLAND | UT | 84003 |
| 738 | MAGALEI, BENJAMIN S \& MARTHA TEE | 8913 PINE HOLLOW DR | CEDAR HILLS | UT | 84062 |
| 739 | MAGNUSSON, LONNIE R \& LORI JT | 2146 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 740 | MAJOR, JOSEPH D \& JAONA H JT | 4549 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 741 | MAKIN DREAMS LLC | 1519 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 742 | MAKIN, KEITH L \& RUTH A TEE | 153 S 200 EAST | AMERICAN FORK | UT | 84003 |
| 743 | MALAN, DAVID S \& NATALIE C JT | 952 W 270 SOUTH \#104 | PLEASANT GROVE | UT | 84062 |
| 744 | MALONE, JAMES C \& LEEANN ET AL | 1599 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 745 | MALONE, JAMES M \& JAMES M | 3709 N 900 WEST | PLEASANT GROVE | UT | 84062 |
| 746 | MANGUM, WILLIAM B \& ASHLEY | 952 W 270 SOUTH \#202 | PLEASANT GROVE | UT | 84062 |
| 747 | MANILA CULINARY WATER COMPANY | 8800 N 3910 WEST | PLEASANT GROVE | UT | 84062 |
| 748 | MANILA INVESTORS LC | 5840 HIGHLAND DR | SALT LAKE CITY | UT | 84121 |
| 749 | MANN, SHIRLEY A | 1384 RENAISSANCE PL | PLEASANT GROVE | UT | 84062 |
| 750 | MARGIN ENTERPRISES LLC | 1285 E CENTER ST | PLEASANT GROVE | UT | 84062 |
| 751 | MARI-LEE MEADOWS INC | 1650 FARNAM ST | OMAHA | NE | 68102 |
| 752 | MARSHALL, LANA K | 1287 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 753 | MARTINEZ, BECKY L ET AL | 650 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 754 | MARTINEZ, KIMBERLY H \& ANTHONY R | 114 W 700 SOUTH | PLEASANT GROVE | UT | 84062 |
| 755 | MARTINEZ, LISA A | 2208 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 756 | MARTINEZ, MARTHA R \& HUGO JT | PO BOX 1904 | PROVO | UT | 84603 |
| 757 | MARTINEZ, RENATO \& HOLLY | 111 E 100 NORTH | PLEASANT GROVE | UT | 84062 |
| 758 | MATTHEWS, HANNAH BETH M ET AL | 1110 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 759 | MATTHEWS, LYNN I \& GEANIE R JT | 1040 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 760 | MATTHEWS, MATT P \& MICHELLE JT | 812 W 2800 NORTH | PLEASANT GROVE | UT | 84062 |
| 761 | MAVERIK COUNTRY STORES INC | 880 W CENTER ST | NORTH SALT LAKE | UT | 84054 |
| 762 | MAYFIELD DEVELOPMENT LC | 758 S 400 EAST | OREM | UT | 84097 |
| 763 | MAYNE, JACK \& GWEN S TEE | 789 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 764 | MAYNE, SHAD G | 96 E 700 SOUTH | PLEASANT GROVE | UT | 84062 |
| 765 | MC CANN, GREG T | 986 W 270 SOUTH | PLEASANT GROVE | UT | 84062 |
| 766 | MC CLAIN, RICHARD A | 1825 TUSCANY WAY | PLEASANT GROVE | UT | 84062 |
| 767 | MC GEE, JAMES \& ESCHE JT | 399 S LOCUST AV | PLEASANT GROVE | UT | 84062 |
| 768 | MCALLISTER, BURTON JAMES | 4019 N 900 WEST | PLEASANT GROVE | UT | 84062 |
| 769 | MCDONALD, TACY L TEE | 1182 W 3420 NORTH | PLEASANT GROVE | UT | 84062 |
| 770 | MCHUGH, JOHN R \& MATTHEW JT | 221 POPLAR ST | ANACONDA | MT | 59711 |
| 771 | MCKINNON, WILLIAM M \& LIN M JT | 889 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 772 | MCPHERSON, BRYAN D | 613 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 773 | MEDFORD, TROY J | 1226 NORTHFIELD DR | PLEASANT GROVE | UT | 84062 |
| 774 | MELDRUM, FLOYD A TEE | 601 S RANCHO DR \#A10 | LAS VEGAS | NV | 89106 |
| 775 | MELLOTT, CARSON A \& KELLIE A | 397 E 300 SOUTH | PLEASANT GROVE | UT | 84062 |


| 776 | MELVIN V AND MARY C FRANDSEN FAMILY | 506 S 100 WEST | AMERICAN FORK | UT | 84003 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 777 | MEMMOTT, KELLY L \& JANALYN W JT | 935 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 778 | MERRELL, SCOTT \& SHARI JT | 681 W 2000 NORTH | PLEASANT GROVE | UT | 84062 |
| 779 | MERRYWEATHER, FRANK B \& JOANN TEE | 1130 E 900 SOUTH | PLEASANT GROVE | UT | 84062 |
| 780 | MESSERSMITH, VERNAL D \& CORA R | 1050 W 190 SOUTH | LEHI | UT | 84043 |
| 781 | MESSINGER, JEFF | 523 W 2900 NORTH | PLEASANT GROVE | UT | 84062 |
| 782 | METLER BROTHERS CONSTRUCTION INC | 973 S OREM BLVD | OREM | UT | 84058 |
| 783 | MICHAEL L ROBINSON PROPERTIES LC | 116 W 2430 NORTH | PLEASANT GROVE | UT | 84062 |
| 784 | MILLER INVESTMENT COMPANY | 886 E 900 SOUTH | PLEASANT GROVE | UT | 84062 |
| 785 | MILLER, ANNALISE | 986 W 270 SOUTH \#201 | PLEASANT GROVE | UT | 84062 |
| 786 | MILLER, BRANDON \& HEATHER M JT | 1337 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 787 | MILLER, CLAYTON L \& MICHELE | 1243 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 788 | MILLER, JAMES R | 3826 S 2300 EAST | SALT LAKE CITY | UT | 84109 |
| 789 | MILLER, KENDALL C | 63 PELICAN DR | RUPERT | ID | 83350 |
| 790 | MILLER, LUTHER \& DARLA J JT | 2224 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 791 | MILLER, LYNN G \& CHERRI H JT | 1786 N 1200 WEST | PLEASANT GROVE | UT | 84062 |
| 792 | MILLET, MICHAEL B \& DIXIE F JT | 1454 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 793 | MILLETT, KENNETH E \& MARGARET JT | 490 S 1100 EAST | PLEASANT GROVE | UT | 84062 |
| 794 | MINER, VINSON | 952 W 270 SOUTH \#102 | PLEASANT GROVE | UT | 84062 |
| 795 | MIRA CONDOMINIUMS DEVELOPMENT LLC | 1038 SILVERANCH DR | GARDNERVILLE | NV | 89460 |
| 796 | MIRAGLIA, STEPHEN J | 986 W 270 SOUTH \#102 | PLEASANT GROVE | UT | 84062 |
| 797 | MISDOM, LEE \& JERI L JT | 1704 W 1060 NORTH | PLEASANT GROVE | UT | 84062 |
| 798 | MITCHELL, VONE J \& GLENDA G | 384 E 300 SOUTH | PLEASANT GROVE | UT | 84062 |
| 799 | MIYA, JAY | 4211 MICHAEL AV | LOS ANGELES | CA | 90066 |
| 800 | MKKM PROPERTIES LLC | 870 W 410 NORTH | LINDON | UT | 84042 |
| 801 | MONSON, ELSIE W | 3971 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 802 | MONSON, MARK S | 986 W 270 SOUTH \#204 | PLEASANT GROVE | UT | 84062 |
| 803 | MONSON, MICHAEL VAL | 9573 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 804 | MONSON, ROSS E \& GLORIA D JT | 9561 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 805 | MONTOYA, DAVID E \& ERENDIRA M JT | 770 GROVE CREEK DR | PLEASANT GROVE | UT | 84062 |
| 806 | MOON, JONATHAN D \& RICHELLE E JT | 3636 LITTLE ROCK DR | PROVO | UT | 84604 |
| 807 | MOORE, BONNIE | PO BOX 22268 | SALT LAKE CITY | UT | 84122 |
| 808 | MOORE, EDWARD A \& HILLARY J ET AL | 698 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 809 | MOORE, KEVIN L \& COURTNEY JT | 1146 MUSTANG LN | LEHI | UT | 84045 |
| 810 | MOORE, RICHARD E \& FAYE L | 555 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 811 | MORGAN, JUSTIN \& STEPHANIE JT | 87 N 1620 WEST | PLEASANT GROVE | UT | 84062 |
| 812 | MORGAN, STEPHANIE | 75 N 1620 WEST | PLEASANT GROVE | UT | 84062 |
| 813 | MORRISON, WILLIAM M \& SHEILA JT | 3284 N 1450 WEST | PLEASANT GROVE | UT | 84062 |
| 814 | MORSE, ANTHONY T \& DEIDREY JT | 4262 N 900 WEST | PLEASANT GROVE | UT | 84062 |
| 815 | MORTENSEN, SIDNEY G \& JANICE JT | 1466 E 1000 SOUTH | PROVO | UT | 84606 |
| 816 | MOULTON, RALPH R \& ALIDA E TEE | PO BOX 319 | PLEASANT GROVE | UT | 84062 |
| 817 | MOUNTAIN EXPANSION LLC | 583 N 1100 EAST | AMERICAN FORK | UT | 84003 |
| 818 | MOWER, DOUGLAS R ET AL | 820 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 819 | MOWER, NATHAN N \& CAROLYN G JT | 2247 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 820 | MUHLESTEIN, DANIEL H \& LA NAE JT | 787 N 400 EAST | LINDON | UT | 84042 |
| 821 | MUNDAY, CHRISTOPHER B \& LOUIS JT | 812 W 4230 NORTH | PLEASANT GROVE | UT | 84062 |
| 822 | MUNICIPAL BUILDING AUTHORITY OF PLEA | 70 S 100 EAST | PLEASANT GROVE | UT | 84062 |
| 823 | MURDOCK, GARY L \& DEBRA A JT | 660 W STATE RD | PLEASANT GROVE | UT | 84062 |
| 824 | MURIE, BENNY \& LINDA JT | 1135 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 825 | MURPHY, WAYNE C \& KONNIE JT | 517 E 300 SOUTH | PLEASANT GROVE | UT | 84062 |
| 826 | MYLER, LISA R | 1278 S 800 EAST | OREM | UT | 84097 |
| 827 | MYLROIE, MICHAEL W \& DANIELLE JT | 497 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 828 | NAUMANN, GUILLERMO \& JOAN JT | 106 W 725 NORTH | LINDON | UT | 84042 |
| 829 | NAUMANN, STERLING W \& KELLIE JT | 1779 N 390 WEST | PLEASANT GROVE | UT | 84062 |
| 830 | NAVARRO, RICARDO | 494 E 200 SOUTH | PLEASANT GROVE | UT | 84062 |
| 831 | NEHRING, CARSON D \& KARIN P | 1015 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 832 | NELSON, DALLIN B \& AMY M JT | 1308 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 833 | NELSON, DENNIS K \& SHERRI JT | 114 E 2150 NORTH | PLEASANT GROVE | UT | 84062 |
| 834 | NELSON, DUANE | 3214 N UNIVERSITY AV \#116 | PROVO | UT | 84604 |
| 835 | NEMROW, SCOTT | 1951 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 836 | NFSCO PROPERTIES LLC | PO BOX 1138 | PLEASANT GROVE | UT | 84062 |
| 837 | NICHOLS, DANIEL L | 1451 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 838 | NICHOLSON, TERRENCE D \& NANCY JT | 1206 W 3300 NORTH | PLEASANT GROVE | UT | 84062 |
| 839 | NICKELL, DARYLENE B \& KENNETH TEE | 965 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 840 | NICOL, SCOTT \& SUE JT | 9850 CANYON RD | PLEASANT GROVE | UT | 84062 |


| 841 | NIELSEN, DOUGLAS R \& HOLLY M JT | 4392 CANYON RD | PLEASANT GROVE | UT | 84062 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 842 | NIELSEN, LJAY | 241 N VINE ST \#1206 | SALT LAKE CITY | UT | 84103 |
| 843 | NIELSEN, RICHARD P ET AL | 1455 S STATE ST \#B | OREM | UT | 84097 |
| 844 | NIELSON, ANDREW J | 175 S 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 845 | NIELSON, DARRIN ET AL | 3654 PAIGE LN | CEDAR HILLS | UT | 84062 |
| 846 | NIELSON, JAMES R \& MARY E TEE | 2124 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 847 | NIELSON, KEITH R \& LAURA E JT | 1135 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 848 | NOAH CORPORATION | 1716 W 1825 NORTH | PROVO | UT | 84604 |
| 849 | NOAH CORPORATION | 1441 UTE BLVD \#100 | PARK CITY | UT | 84098 |
| 850 | NORMAN, JAMES M \& VERNA H JT | 1386 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 851 | NORTON INVESTMENT COMPANY | 627 GROVE CIR | ALPINE | UT | 84004 |
| 852 | NUTTALL, RONALD D \& BIRGITTA JT | 9645 N 8000 WEST | LEHI | UT | 84043 |
| 853 | O DONNELL, ADELAIDE | PO BOX 227 | PLEASANT GROVE | UT | 84062 |
| 854 | OBERHANSLEY, GARTH H \& CHERYL JT | 929 W 670 SOUTH \#8 | PLEASANT GROVE | UT | 84062 |
| 855 | OCKEY, PAUL TEE | 812 VINE CREEK CIR | SALT LAKE CITY | UT | 84107 |
| 856 | OFFER, JENNIE L | 119 E BATTLE CREEK DR | PLEASANT GROVE | UT | 84062 |
| 857 | OGDEN, KRISTOL M \& SAMUEL P JT | 1561 W 80 SOUTH | PLEASANT GROVE | UT | 84062 |
| 858 | OLIPHANT, JAMES R \& MARYLIN | 1011 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 859 | OLSEN, ARTHUR G \& DELMA K | 1977 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 860 | OLSEN, GARY | 735 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 861 | OLSEN, GARY G \& REBECCA L ET JT | 35 W 725 NORTH | LINDON | UT | 84042 |
| 862 | OLSEN, GORDON L \& MELODY A JT | 9757 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 863 | OLSEN, GORDON L \& MELODY B JT | 4209 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 864 | OLSEN, SHAUN D \& RACHEL K JT | 354 S 420 EAST | PLEASANT GROVE | UT | 84062 |
| 865 | OLSEN, VERLYN L \& BETH L TEE | 350 E 300 SOUTH | PLEASANT GROVE | UT | 84062 |
| 866 | OLSON, LINDA M TEE | 45 S 1100 EAST | AMERICAN FORK | UT | 84003 |
| 867 | OLSON, R KIM \& BARI L TEE | 691 W 4000 NORTH | PLEASANT GROVE | UT | 84062 |
| 868 | ORSO, LINDA | PO BOX 252 | PLEASANT GROVE | UT | 84062 |
| 869 | ORTON, HOWARD \& O HOWARD AKA | 970 E 900 SOUTH | PLEASANT GROVE | UT | 84062 |
| 870 | ORTON, MARK W \& ROBIN L JT | 1114 N 1270 EAST | AMERICAN FORK | UT | 84003 |
| 871 | ORTON, SEAN \& TINA JT | 1927 GLENDON CIR | PLEASANT GROVE | UT | 84062 |
| 872 | ORTON, STERLING W \& CONNIE R JT | 1204 W 3420 NORTH | PLEASANT GROVE | UT | 84062 |
| 873 | ORVIS, VICTOR R \& LINDA L ET JT | 305 SUMMERWOOD DR | BOUNTIFUL | UT | 84010 |
| 874 | OSBORNE, BOBBY W \& HEATHER P JT | 680 W 2000 NORTH | PLEASANT GROVE | UT | 84062 |
| 875 | OSBORNE, BOBBY W \& HEATHER P JT | 146 E 100 SOUTH | AMERICAN FORK | UT | 84003 |
| 876 | OSCARSON, ROBERT A \& BETTY JT | 89 S 800 EAST | PLEASANT GROVE | UT | 84062 |
| 877 | OSMOND DEVELOPMENT LLC | 9611 OLD ORCHARD LN | CEDAR HILLS | UT | 84062 |
| 878 | OVALLE, HECTOR | 309 S 100 EAST | PLEASANT GROVE | UT | 84062 |
| 879 | OVERLY, BRAD W \& MARY P TEE | 1442 W 3300 NORTH | PLEASANT GROVE | UT | 84062 |
| 880 | PACE, DARLENE LA REE ET AL TEE | 1010 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 881 | PACE, SANDRA D ET AL TEE | 93 E CENTER ST | PLEASANT GROVE | UT | 84062 |
| 882 | PACIFICORP | 1407 W NORTH TEMPLE \#110 | SALT LAKE CITY | UT | 84116 |
| 883 | PACK, ERVIN E \& BARBARA M JT | 1260 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 884 | PACK, GLEN A \& RENEE J | 2335 N 1150 WEST | PLEASANT GROVE | UT | 84062 |
| 885 | PACK, GLEN A \& RENEE J | 1830 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 886 | PACK, HEATHER \& BRADFORD JT | 1020 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 887 | PACK, KENNETH E \& MARILYN K TEE | 2273 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 888 | PAJELA, MINA R | 1088 E 390 SOUTH | AMERICAN FORK | UT | 84003 |
| 889 | PALACIOS, FLAVIA CAROLINA | 1573 W 80 SOUTH | PLEASANT GROVE | UT | 84062 |
| 890 | PALMER, BRUCE W \& KAYE T TEE | 381 W 800 NORTH | LINDON | UT | 84042 |
| 891 | PALMER, EVAN M \& DIANE J | 450 S LOCUST AV | PLEASANT GROVE | UT | 84062 |
| 892 | PANKHURST, RICHARD \& KRISTIN JT | 430 MARMORE RD | CHICO | CA | 95928 |
| 893 | PARK, LILAS LEE | 910 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 894 | PARKINSON, DAVID O ET AL AN INT | 265 N COUNTRY MANOR LN | ALPINE | UT | 84004 |
| 895 | PARRISH, LAFE A \& JOYCE B ET TEE | 1445 E 300 NORTH | AMERICAN FORK | UT | 84003 |
| 896 | PARRY, DOUGLAS C \& LINDA H JT | 760 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 897 | PATTERSON CONSTRUCTION INC ET AL | 11009 N 6400 WEST | HIGHLAND | UT | 84003 |
| 898 | PATTERSON, JESSE W \& HEATHER JT | 159 S PLEASANT GROVE BLVD \#19 | PLEASANT GROVE | UT | 84062 |
| 899 | PECK, STEVEN L \& LORI L JT | 1211 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 900 | PELAYO, MAGDALENA G TEE | 111 E 700 SOUTH | PLEASANT GROVE | UT | 84062 |
| 901 | PEN \& INK LTD | 1199 W 700 SOUTH | PLEASANT GROVE | UT | 84062 |
| 902 | PEREZ, RUBEN \& NORMA L JT | 90 W 700 SOUTH | PLEASANT GROVE | UT | 84062 |
| 903 | PERKINS, HAL C | 2501 N 860 WEST | PLEASANT GROVE | UT | 84062 |
| 904 | PERSONAL PROPERTIES | PO BOX 357 | AMERICAN FORK | UT | 84003 |
| 905 | PETERSEN, JOY D | 185 N 1630 WEST | PLEASANT GROVE | UT | 84062 |


| 906 | PETERSEN, MARK L \& BECKY JT | PO BOX 462 | PLEASANT GROVE | UT | 84062 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 907 | PETERSEN, VINCE L | 1091 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 908 | PETERSON, FERN C TEE | 31130 S GENERAL KEARNY RD \#63 | TEMECULA | CA | 92591 |
| 909 | PETERSON, JARED W \& BARBARADE JT | 25 E 700 SOUTH | PLEASANT GROVE | UT | 84062 |
| 910 | PETERSON, JOHN L \& JO ANN TEE | 1846 MAIN ST | HUNTINGTON BEACH | CA | 92648 |
| 911 | PETERSON, JOSEPH D \& PATRICIA JT | 1060 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 912 | PETERSON, MATTHEW T \& KIMBERL JT | 120 W 725 NORTH | LINDON | UT | 84042 |
| 913 | PETERSON, OREN V \& SYLVIA S TEE | 1250 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 914 | PETERSON, RON B \& BONNIE P JT | 1210 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 915 | PETERSON, SCOTT \& REBECCA JT | 986 W 270 SOUTH \#303 | PLEASANT GROVE | UT | 84062 |
| 916 | PETRONI, CLORINDA CARMEN | 375 W 800 NORTH | LINDON | UT | 84042 |
| 917 | PETRONI, SILVIA L | 393 W 800 NORTH | LINDON | UT | 84042 |
| 918 | PETRONI, WALTER SANTIAGO | 369 W 800 NORTH | LINDON | UT | 84042 |
| 919 | PETTY, CRAIG \& TIFFANY JT | 355 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 920 | PG VILLAS LLC | 65 E 1250 NORTH | AMERICAN FORK | UT | 84003 |
| 921 | PGALF LLC | 563 W 500 SOUTH \#250 | BOUNTIFUL | UT | 84010 |
| 922 | PHELON, KATHRYN R TEE | 1040 E 900 SOUTH | PLEASANT GROVE | UT | 84062 |
| 923 | PHELON, KEVIN M \& BECKIE D JT | 759 E 200 SOUTH | PLEASANT GROVE | UT | 84062 |
| 924 | PHILLIPS, DAVID O ET AL | 2009 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 925 | PILCH, JOSHUA \& JENNIFER ET A JT | 91 N 1620 WEST | PLEASANT GROVE | UT | 84062 |
| 926 | PINCOCK, DAVID W \& MICKEY J JT | 1692 N 70 EAST | PLEASANT GROVE | UT | 84062 |
| 927 | PINNACLE HOMES AND DEVELOPMENT LLC | 479 W 30 NORTH | AMERICAN FORK | UT | 84003 |
| 928 | PINNACLE POINT L.C. | 1846 MAIN ST | HUNTINGTON BEACH | CA | 92648 |
| 929 | PITCHER, ADAM \& CHERI JT | 1726 W 1060 NORTH | PLEASANT GROVE | UT | 84062 |
| 930 | PITTS, STEVEN L | 4200 N 650 EAST | PROVO | UT | 84604 |
| 931 | PLATT, JOSEPHINE | 339 E 300 SOUTH | PLEASANT GROVE | UT | 84062 |
| 932 | PLEASANT DEVELOPMENT LLC | 574 S STATE ST | OREM | UT | 84058 |
| 933 | PLEASANT GROVE DEVELOPMENT PARTNERS | 304 S MAIN ST | CENTERVILLE | UT | 84014 |
| 934 | PLEASANT GROVE PLAZA LC | 200 WILMOT RD | DEERFIELD | IL | 60015 |
| 935 | PLEASANT SPRINGS LLC | 8058 BARNWOOD WAY | SANDY | UT | 84094 |
| 936 | POLLMANN, RAY D \& ANNE JT | 466 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 937 | PONT, LANE M \& SAMANTHA JT | 190 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 938 | PONTIOUS, TIMOTHY \& NANCY | 472 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 939 | POPE, CHAD L \& ANGIE B | 132 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 940 | PORTER, PAUL E \& DENICE T JT | 495 E 300 SOUTH | PLEASANT GROVE | UT | 84062 |
| 941 | PORTER, TROY \& AMY JT | 820 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 942 | POWELL, MICHAEL \& REAGAN JT | 1535 W 80 SOUTH | PLEASANT GROVE | UT | 84062 |
| 943 | PRENTICE, TOM \& BONNIE L JT | 620 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 944 | PRICE, DARRYN M | 2711 KINGS FOREST DR | KINGWOOD | TX | 77339 |
| 945 | PRICE, JOEL \& ABAGAIL JT | 2588 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 946 | PROCTOR, R RAY \& JOY R TEE | 90 S PROCTOR LA | PLEASANT GROVE | UT | 84062 |
| 947 | PROCTOR, ROBERT R \& JOY JT | 90 S 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 948 | PROCTOR, THOMAS R \& AFTON P JT | 230 S 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 949 | PROFESSIONAL PLAZA AT THE GROVE LLC | 220 S PLEASANT GROVE BLVD | PLEASANT GROVE | UT | 84062 |
| 950 | PROVO LAND EXCHANGE II LC | 255 E 100 SOUTH | PROVO | UT | 84606 |
| 951 | QUIK FIX INC | 7356 N 6500 WEST | AMERICAN FORK | UT | 84003 |
| 952 | QUINTERO, ROBERT A \& HILLARY JT | 902 W 260 SOUTH | PLEASANT GROVE | UT | 84062 |
| 953 | R J ESTATES LLC | 775 REDFORD DR | PROVO | UT | 84604 |
| 954 | R W INVESTMENT LLC | 115 N GENEVA RD | OREM | UT | 84057 |
| 955 | R.A.D. INVESTMENTS LTD UTAH LIMITED | 55 E CENTER ST | PLEASANT GROVE | UT | 84062 |
| 956 | RADMALL, MELVIN R \& DENISE D | 360 N 500 EAST | AMERICAN FORK | UT | 84003 |
| 957 | RAFF, DAYNE | 1974 W 1500 NORTH | LEHI | UT | 84043 |
| 958 | RAFINER, LARRRY L \& JOLENE W JT | 371 E 500 SOUTH | PLEASANT GROVE | UT | 84062 |
| 959 | RAGAN, SHERRY E ET AL | 637 N 1010 WEST | PLEASANT GROVE | UT | 84062 |
| 960 | RAI CORPORATION ET AL AN INT | 210 N PRESTON DR | ALPINE | UT | 84004 |
| 961 | RAMESON, TAMERA B \& RICHARD M JT | 1736 N 70 EAST | PLEASANT GROVE | UT | 84062 |
| 962 | RAMOS, LOURDES | 3454 MIRROR CIR | SARATOGA SPRINGS | UT | 84045 |
| 963 | RAPIER, RYAN \& ADRA R JT | 1809 GARDEN DR | PLEASANT GROVE | UT | 84062 |
| 964 | RASBAND, RYAN D \& REVA J JT | 4625 FERGUSON WAY | CEDAR HILLS | UT | 84062 |
| 965 | RASMUSSEN, DENNIS A \& SANDRA TEE | 864 S 1150 EAST | PLEASANT GROVE | UT | 84062 |
| 966 | RASMUSSEN, MILTON K \& CHERYL JT | 1524 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 967 | RAWLINGS, JAN LORIS | 147 E 400 NORTH | PLEASANT GROVE | UT | 84062 |
| 968 | RDF PROPERTIES LLC ET AL | 10568 N 5900 WEST | HIGHLAND | UT | 84003 |
| 969 | REASON, MICHAEL A | 121 E 1500 NORTH | PLEASANT GROVE | UT | 84062 |
| 970 | REBER, ROBERT J | 325 S 100 EAST | PLEASANT GROVE | UT | 84062 |


| 971 | REDWING PROPERTIES LLC | 11019 N 5500 WEST | HIGHLAND | UT | 84003 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 972 | RENAISSANCE AT INDIAN SPRINGS HOMEOW | 1391 RENAISSANCE PL | PLEASANT GROVE | UT | 84062 |
| 973 | RENSHAW, LANCE G | 349 E 280 SOUTH | ALPINE | UT | 84004 |
| 974 | RENSHAW, STEPHEN R \& JOSLYN JT | 2725 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 975 | REYNOLDS, DAVID J \& JULIE A JT | 1042 W 500 NORTH | PLEASANT GROVE | UT | 84062 |
| 976 | RHA COMMUNITY SERVICES OF UTAH INC | 3060 W PEACHTREE RD \#1150 | ATLANTA | GA | 30305 |
| 977 | RICHARDS, MONICA H \& DAVID M JT | 402 S 420 EAST | PLEASANT GROVE | UT | 84062 |
| 978 | RICHARDSON, GREGORY L \& HOLLY JT | 882 W 2800 NORTH | PLEASANT GROVE | UT | 84062 |
| 979 | RICHINS, IDONNA E | 542 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 980 | RICHMITCH PROPERTIES LLC | 695 W STATE RD | PLEASANT GROVE | UT | 84062 |
| 981 | RICKERS, ED | 372 N 1130 EAST | LINDON | UT | 84042 |
| 982 | RIGGS, JOSEPH W | 2337 N 1050 WEST | PLEASANT GROVE | UT | 84062 |
| 983 | RIGHTSELL, JIMMY L \& COLLEEN JT | 65 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 984 | RIRIE, CRAIG M \& BECKY A JT | 141 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 985 | RJJJ INVESTMENTS LC | 492 S 250 WEST | PLEASANT GROVE | UT | 84062 |
| 986 | RLK PROPERTIES L.C. | 570 W 100 SOUTH | LINDON | UT | 84042 |
| 987 | RMAK HOLDINGS LLC | 10245 DOWNING DR | CEDAR HILLS | UT | 84062 |
| 988 | ROBBINS, TYRAN J \& KRISTEN B JT | 717 W 2240 NORTH | PLEASANT GROVE | UT | 84062 |
| 989 | ROBERTS, KONNIE | 2931 N 1130 WEST | PLEASANT GROVE | UT | 84062 |
| 990 | ROBERTSON, JOHN M \& C KAIRA JT | 317 E 1640 NORTH | PLEASANT GROVE | UT | 84062 |
| 991 | ROBINSON, GARY N \& TRACIE R JT | 54 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 992 | ROBINSON, GENE B \& KAREN T JT | PO BOX 1832 | OREM | UT | 84059 |
| 993 | ROBINSON, JAY K \& JEAN B JT | 375 PAHVANT DR | RICHFIELD | UT | 84701 |
| 994 | ROBINSON, JEFFERY L \& EILEEN JT | 998 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 995 | ROBISON, JASON \& AUBREY JT | 963 W 670 SOUTH \#16 | PLEASANT GROVE | UT | 84062 |
| 996 | ROCKY MOUNTAIN WELDING HOLDING LC | PO BOX 397 | PLEASANT GROVE | UT | 84062 |
| 997 | RODDA, LORELL L | 4004 SAWGRASS | CEDAR HILLS | UT | 84062 |
| 998 | ROGERS, DONALD R \& WENDY S JT | 7300 BEIJING PL | DULLES | VA | 20189 |
| 999 | ROHMER, BRETT F \& KAY W | 1830 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 1000 | ROMERO, CYNTHIA D | 613 N 600 WEST | AMERICAN FORK | UT | 84003 |
| 1001 | RONALD P FAKLER FAMILY LIMITED PARTN | 2572 STONEBURY LOOP RD | SPRINGVILLE | UT | 84663 |
| 1002 | ROSS, JACOB \& MELANIE JT | 838 E 500 NORTH | AMERICAN FORK | UT | 84003 |
| 1003 | ROTHE, EDGAR F \& LU ANN | 1362 RENAISSANCE PL | PLEASANT GROVE | UT | 84062 |
| 1004 | ROTHE, RUTH H ET AL TEE | 1432 RENAISSANCE PL | PLEASANT GROVE | UT | 84062 |
| 1005 | ROUNDY, MICHAEL \& BECKY JT | 4554 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 1006 | ROUTSONG, NATHAN \& TARA JT | 3647 PAIGE LN | CEDAR HILLS | UT | 84062 |
| 1007 | ROWLEY, DENNIS E \& DENICE C ET AL | 128 S 100 WEST | AMERICAN FORK | UT | 84003 |
| 1008 | ROWLEY, GRANT A | 695 W 1285 NORTH | OREM | UT | 84057 |
| 1009 | RSP LTD | PO BOX 345 | PLEASANT GROVE | UT | 84062 |
| 1010 | RUIZ, CHRIS D \& ANITA ET AL JT | 1161 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 1011 | RUIZ, MIGUEL | 1365 W 50 NORTH | PLEASANT GROVE | UT | 84062 |
| 1012 | S \& T PROPERTIES LC | 897 W 2225 SOUTH | WOODS CROSS | UT | 84087 |
| 1013 | SADERUP, BRUCE | 1156 ALTON WAY | SALT LAKE CITY | UT | 84108 |
| 1014 | SADLER, SHELDON M | 355 W 3340 NORTH | PLEASANT GROVE | UT | 84062 |
| 1015 | SAGE, TERRY M \& ELEANOR L TEE | 660 W STATE RD | PLEASANT GROVE | UT | 84062 |
| 1016 | SAGER, D LORRAINE ET AL | 357 N 950 EAST | AMERICAN FORK | UT | 84003 |
| 1017 | SALMON, DAVID C | 1555 N 150 EAST | PLEASANT GROVE | UT | 84062 |
| 1018 | SAMPSON, DALE W \& CYNTHIA D JT | 410 S LOCUST AV | PLEASANT GROVE | UT | 84062 |
| 1019 | SAMPSON, HELEN | 95 N 1620 WEST | PLEASANT GROVE | UT | 84062 |
| 1020 | SANFORD, CHRISTEL B TEE | 13478 OAKRIDGE DR | ALPINE | UT | 84004 |
| 1021 | SANTAI MEHRIZY, REZA ET AL | 1087 N 1050 EAST | OREM | UT | 84097 |
| 1022 | SAPP, GREGORY L \& JAYNE A JT | 365 E 300 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1023 | SARGENT, HAROLD | 112 E 700 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1024 | SAVAGE, LARAE T | 9093 CANYON HEIGHTS DR | CEDAR HILLS | UT | 84062 |
| 1025 | SAVAGE, NEAL \& LA RAE ET AL | 6340 S 3000 EAST \#600 | SALT LAKE CITY | UT | 84121 |
| 1026 | SAVAGE, NEAL \& T LUKE ET AL | 6340 S 3000 EAST \#600 | SALT LAKE CITY | UT | 84121 |
| 1027 | SCHAEFER, DARIN S \& GRACE S JT | 1865 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 1028 | SCHMUHL, SANDRA L | 91 E 700 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1029 | SCHOUTEN, DAVID J | 641 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 1030 | SCHOW'S RANCHETTE FAMILY LIMITED PAR | 2445 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 1031 | SCHOW, ROBERT | 3548 NORTH 900 WEST | PLEASANT GROVE | UT | 84062 |
| 1032 | SCHOW, CRAIG W \& SUSAN M JT | 2547 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 1033 | SCHRAM, MATTHEW \& ANAHI JT | 295 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 034 | SCOTT, KAY LAMAR | 931 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 1035 | SCOTT, RONALD E \& ANNA M JT | 2148 N 1300 WEST | PLEASANT GROVE | UT | 84062 |


| 1036 | SCS INVESTMENTS LLC | PO BOX 1043 | PLEASANT GROVE | UT | 84062 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1037 | SEARLE, L KENT \& LUANA G TEE | 40 E 1120 NORTH | AMERICAN FORK | UT | 84003 |
| 1038 | SEDIVY, PATRICK \& ALLYSE JT | 2105 TUSCANY WAY | PLEASANT GROVE | UT | 84062 |
| 1039 | SHADYWOOD LLC | 6084 S 900 EAST \#202 | SALT LAKE CITY | UT | 84121 |
| 1040 | SHARDLOW, PAULA JANIECE | 2566 RENAISSANCE PL | PLEASANT GROVE | UT | 84062 |
| 1041 | SHAW, JONATHAN \& STEPHANIE V JT | 283 N 960 EAST | PLEASANT GROVE | UT | 84062 |
| 1042 | SHELLEY, BRIAN G \& GINA L JT | 270 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 1043 | SHELLEY, KRISTINA L \& AARON K JT | 9804 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 1044 | SHEPHERD, PAUL \& SANDY | 538 S LOCUST AV | PLEASANT GROVE | UT | 84062 |
| 1045 | SHEPHERD, RODNEY \& CAROLYN | 540 E 500 NORTH | LINDON | UT | 84042 |
| 1046 | SHILL, MATTHEW P \& JUBALEN JT | 3688 N 1270 WEST | PLEASANT GROVE | UT | 84062 |
| 1047 | SHOELL, JOHN F \& MARIANNE T | 73 E 1200 NORTH | PLEASANT GROVE | UT | 84062 |
| 1048 | SHUMSON PROPERTIES LLC | 915 S 500 EAST \#100 | AMERICAN FORK | UT | 84003 |
| 1049 | SHUMWAY, KAY G \& LINDA JT | 120 E 700 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1050 | SHURTLIFF, DONALD C \& JOAN TEE | 9027 FERNDALE AV | FONTANA | CA | 92335 |
| 1051 | SIBLEY, TROY R \& CANDACE C JT | 1385 N MURDOCK DR | PLEASANT GROVE | UT | 84062 |
| 1052 | SIDDOWAY, WILLIAM R \& NILA TEE | 672 E 900 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1053 | SIDING GUYS INC THE | PO BOX 50624 | PROVO | UT | 84605 |
| 1054 | SILVER CREEK DEVELOPMENT GROUP L.L.C | 3651 N 100 EAST \#350 | PROVO | UT | 84604 |
| 1055 | SIPE, DAVID A ET AL | 180 MAPLE LN | PLEASANT GROVE | UT | 84062 |
| 1056 | SJA PROPERTIES LC UTAH LLC | 330 S MAIN ST | PLEASANT GROVE | UT | 84062 |
| 1057 | SKPC INC | 3548 N 900 WEST | PLEASANT GROVE | UT | 84062 |
| 1058 | SLADE, RYAN L | 134 W 725 NORTH | LINDON | UT | 84042 |
| 1059 | SMART, JOYCE M \& JOYCE M ET A TEE | 201 S MAIN ST \#1100 | SALT LAKE CITY | UT | 84111 |
| 1060 | SMART, SIDNEY L \& KAREN B JT | 9775 N 4000 WEST | PLEASANT GROVE | UT | 84062 |
| 1061 | SMITH, BETTY J \& DON L TEE | 371 E 700 NORTH | PLEASANT GROVE | UT | 84062 |
| 1062 | SMITH, CLAYN R \& KAREN O JT | 1822 TUSCANY WAY | PLEASANT GROVE | UT | 84062 |
| 1063 | SMITH, CLAYTON R \& MISTY K JT | 155 MAPLE LN | PLEASANT GROVE | UT | 84062 |
| 1064 | SMITH, COLLEEN MARY TEE | 591 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 1065 | SMITH, CRAIG H \& LINDA D JT | 1690 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 1066 | SMITH, DAVID K \& JANET S | 635 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1067 | SMITH, GARRETT B \& HOLLY M JT | 2162 VERONA CIR | PLEASANT GROVE | UT | 84062 |
| 1068 | SMITH, GLENN B \& KATHY R TEE | 471 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 1069 | SMITH, JAMES G \& DOROTHY H TEE | 1121 GROVE CREEK DR | PLEASANT GROVE | UT | 84062 |
| 1070 | SMITH, JERRY | 135 W CENTER | PLEASANT GROVE | UT | 84062 |
| 1071 | SMITH, JERRY P \& BARBARA J TEE | 448 W 2900 NORTH | PLEASANT GROVE | UT | 84062 |
| 1072 | SMITH, JERRY P \& BARBARA J ET TEE | 224 S MAIN ST \#456 | SPRINGVILLE | UT | 84663 |
| 1073 | SMITH, MINDY | 952 W 270 SOUTH \#201 | PLEASANT GROVE | UT | 84062 |
| 1074 | SMITH, PAUL C | 501 E 300 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1075 | SMITH, SCOTT LEROY ET AL | 2920 ROBINWOOD DR | TAYLORSVILLE | UT | 84118 |
| 1076 | SMITH, STANLEY B \& MARY K JT | 362 N 2000 WEST | PLEASANT GROVE | UT | 84062 |
| 1077 | SMITH, TARA J \& JASON P TEE | 2071 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 1078 | SMITH, WADE R \& PATRICIA JT | 1786 N 270 WEST | PLEASANT GROVE | UT | 84062 |
| 1079 | SMITHS FOOD \& DRUG CENTERS INC | 3336 E 32ND ST \#217 | TULSA | OK | 74135 |
| 1080 | SMOOT, ROBERT S \& GAYLIA A TEE | 1436 RENAISSANCE PL | PLEASANT GROVE | UT | 84062 |
| 1081 | SNELL, JOY B TEE | 765 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 1082 | SNYDER, GARY \& LYNETTE TEE | 2966 W 880 NORTH | PROVO | UT | 84601 |
| 1083 | SOFOIFA, MARLON E \& SANDRA K JT | 1122 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 1084 | SOLARI, PATRICIA OSWOOD | PO BOX 5628 | OROVILLE | CA | 95966 |
| 1085 | SORENSEN, RODNEY S \& REBECCA JT | 1884 GLENDON CIR | PLEASANT GROVE | UT | 84062 |
| 1086 | SORENSEN, SHANE D \& CHRISTINE A | 375 S LOCUST AV | PLEASANT GROVE | UT | 84062 |
| 1087 | SORENSEN, WESLEY R \& PAMELA E JT | 803 W 1500 NORTH | PLEASANT GROVE | UT | 84062 |
| 1088 | SORENSON, B DONALD \& MARILYN JT | 884 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 1089 | SOUTHAM, LESLIE R \& NANCY A ET AL | 450 W STATE RD | PLEASANT GROVE | UT | 84062 |
| 1090 | SOUTHWORTH, LARRY \& MARTY JT | 3805 VALLEY VIEW DR | CEDAR HILLS | UT | 84062 |
| 1091 | SPINAL REHAB PROPERTIES LLC | 9472 AZTEC DR | CEDAR HILLS | UT | 84062 |
| 1092 | SRM REAL ESTATE LLC | 1151 CEDAR RIDGE RD | LEHI | UT | 84043 |
| 1093 | STAKER, SCOTT | 690 S 50 WEST | PLEASANT GROVE | UT | 84062 |
| 1094 | STANGER, MARK T \& JENNY L JT | 968 APPLE GROVE LN | PLEASANT GROVE | UT | 84062 |
| 1095 | STAPLETON, HEATHER \& ROBERT B JT | 929 W 670 SOUTH \#5 | PLEASANT GROVE | UT | 84062 |
| 1096 | STAR 6 CONSTRUCTION LLC | 986 E 1480 NORTH | AMERICAN FORK | UT | 84003 |
| 1097 | STEINAKER, JOHN \& MARY JT | 149 S 950 EAST | PLEASANT GROVE | UT | 84062 |
| 1098 | STEPHENS, TIM A | 5725 W 9600 NORTH | HIGHLAND | UT | 84003 |
| 1099 | STEPHENSON, JOHN | 365 W 800 NORTH | LINDON | UT | 84042 |
| 1100 | STEVENS, BRIAN W \& SARI K JT | 1560 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |


| 1101 | STEVENS, BRYCE \& KRISTA JT | 640 W 2100 NORTH | PLEASANT GROVE | UT | 84062 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1102 | STEVENS, EARL W \& LORIA JT | 1322 W 2100 NORTH | PLEASANT GROVE | UT | 84062 |
| 1103 | STEVENS, MARK DEVERL JR ET AL | 1316 W 540 NORTH | PLEASANT GROVE | UT | 84062 |
| 1104 | STEVENS, ROBERT K \& THEA L TEE | 1901 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 1105 | STEWART, CHARLES W \& KELLY L TEE | 854 E 1100 SOUTH | AMERICAN FORK | UT | 84003 |
| 1106 | STEWART, WILLIAM D \& JANET K JT | 9473 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 1107 | STILL, JUDITH A | 320 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 1108 | STIRLING, DAVID N | 2449 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 1109 | STODDARD, CURTIS K \& NANCY L JT | 5425 SE BYRON DR | PORTLAND | OR | 97267 |
| 1110 | STORY, KEITH D \& JOYCE L TEE | 1080 E 900 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1111 | STOTT, PETER A \& MARIE A JT | 516 E 200 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1112 | STRATTON, KEN | 9736 N 4800 WEST | AMERICAN FORK | UT | 84003 |
| 1113 | STRAY INVESTMENTS LLC | 12712 WHISPER BEND DR | DRAPER | UT | 84020 |
| 1114 | STREET, DON EDWIN | 195 N 850 EAST | PLEASANT GROVE | UT | 84062 |
| 1115 | STUBBS, CHAD M | 1913 GLENDON CIR | PLEASANT GROVE | UT | 84062 |
| 1116 | STUHLMACHER, LA FAITH TEE | PO BOX 1196 | AMERICAN FORK | UT | 84003 |
| 1117 | SUN, ANGEL | 1530 GOUGH ST \#303 | SAN FRANCISCO | CA | 94109 |
| 1118 | SUNDANCER HOLDINGS LLC | 3376 MAGIC VIEW DR | SALT LAKE CITY | UT | 84121 |
| 1119 | SUNDERLAND, DAVID W \& NIKKI | 986 W 270 SOUTH \#304 | PLEASANT GROVE | UT | 84062 |
| 1120 | SUOJANEN, KARI T \& KRISTY L JT | 9547 CANYON RD | CEDAR HILLS | UT | 84062 |
| 1121 | SUOJANEN, KARI T \& KRISTY L TEE | 9541 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 1122 | SUTCH, ROBERT L \& CYNTHIA P TEE | 752 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 1123 | SUTTON, JAMES \& LAURA E JT | 180 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 1124 | SWALBERG, JERALDENE | 693 E 990 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1125 | SWEET CHARITY INC | 211 E 300 SOUTH \#212 | SALT LAKE CITY | UT | 84111 |
| 1126 | SWENSON, NATHAN B \& BRENDA J JT | 1315 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 1127 | SWENSON, SHIRLEY RUTH TEE | 301 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 1128 | T B LLLC | 1360 W STATE RD | PLEASANT GROVE | UT | 84062 |
| 1129 | T\&J COMMERCIAL PROPERTIES LLC | 100 E STATE RD | PLEASANT GROVE | UT | 84062 |
| 1130 | TAGGART, TODD B \& JULIE K JT | 1269 E 100 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1131 | TANNER, BYRON V | 518 S 2150 WEST \#302 | PLEASANT GROVE | UT | 84062 |
| 1132 | TANNER, HOWARD S \& PATRICIA A TEE | 2858 N 900 WEST | PLEASANT GROVE | UT | 84062 |
| 1133 | TAYLOR, CHRISTINE | 940 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 1134 | TAYLOR, M HARVEY \& JANET R JT | 175 MAPLE LN | PLEASANT GROVE | UT | 84062 |
| 1135 | TAYLOR, ROBERT D \& JANET L JT | 1342 RENAISSANCE PL | PLEASANT GROVE | UT | 84062 |
| 1136 | TAYLOR, RODGER L \& GERALDINE JT | 1075 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 1137 | TAYLOR, RON \& SONDRA JT | 2568 RENAISSANCE PL | PLEASANT GROVE | UT | 84062 |
| 1138 | TAYLOR, STEPHEN C \& SUE A JT | 986 W 270 SOUTH \#202 | PLEASANT GROVE | UT | 84062 |
| 1139 | TAYLOR, THOMAS J \& JEAQUETTA | 9367 AVANYU DR | CEDAR HILLS | UT | 84062 |
| 1140 | TEEMSMA, DONALD L \& BARBARA A TEE | 5534 TRINITY WAY | SAN DIEGO | CA | 92120 |
| 1141 | TEMPLE VIEW MEDICAL COMPLEX L.C. | 830 N 2000 WEST | PLEASANT GROVE | UT | 84062 |
| 1142 | TEN BOSCH, SVEN S \& LUCINDA C | 1505 W 80 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1143 | TERRY, KEITH | 2179 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 1144 | TEUSCHER, BRUCE E \& LYNETTE C JT | 1778 N 390 WEST | PLEASANT GROVE | UT | 84062 |
| 1145 | THAYER, PHILLIP \& STEPHANIE G JT | 920 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 1146 | THAYNE, DENNIS R \& KARLA JT | 4087 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 1147 | THAYNE, DENNIS R \& KARLA ET AL | 634 W 4000 NORTH | PLEASANT GROVE | UT | 84062 |
| 1148 | THAYNE, EDITH ANN | 385 S MAIN ST | PLEASANT GROVE | UT | 84062 |
| 1149 | THE LYLE J SMART FAMILY LIMITED PART | 2511 N 180 WEST | PLEASANT GROVE | UT | 84062 |
| 1150 | THOMAN, DEBRA C | PO BOX 364 | PLEASANT GROVE | UT | 84062 |
| 1151 | THOMAS, CHARLES W \& MELISSA K JT | 1335 W 2180 NORTH | PLEASANT GROVE | UT | 84062 |
| 1152 | THOMAS, DEBRAC SUCTEE | 754 W 4000 NORTH | PLEASANT GROVE | UT | 84062 |
| 1153 | THOMAS, LYNDSIE TEE | 3968 W 9600 NORTH | PLEASANT GROVE | UT | 84062 |
| 1154 | THOMAS, MICHAEL D \& ADRIENNE TEE | 2440 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 1155 | THOMPSON, DARRELL \& LORI JT | 16 S 600 WEST | LINDON | UT | 84042 |
| 1156 | THOMSON, PHYLLIS POULSON | 235 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 1157 | THORNE, MARGARET A \& MARGARET TEE | 2344 ARNETTE DR | SALT LAKE CITY | UT | 84109 |
| 1158 | THORNTON, RUSSELL S | 2076 N JANICE CIR | PLEASANT GROVE | UT | 84062 |
| 1159 | THORNTON, TY \& NATALIA JT | 533 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 1160 | THORNTON, WAYNE L | 49 E 700 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1161 | TIMOTHY, WILLIAM A \& SUSAN J TEE | 745 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 1162 | TIMP RIDGE DEVELOPMENT INC | 65 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 1163 | TITERA, WILLIAM R TEE | 29267 NOTINGHAM CT | WESTLAKE | OH | 44145 |
| 1164 | TKM REAL ESTATE LLC | 122 E 2000 NORTH | OREM | UT | 84057 |
| 1165 | TOLEN, WILLIAM CHRISTOPHER | 1233 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |


| 1166 | TOLMAN, LARRY E \& DARLYNN A JT | 118 S 1100 EAST | AMERICAN FORK | UT | 84003 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1167 | TOMLINSON, TERRY L \& TERRIE L TEE | 246 E 800 NORTH | LINDON | UT | 84042 |
| 1168 | TRADITIONAL LIVING LLC | 376 E 400 SOUTH \#304 | SALT LAKE CITY | UT | 84111 |
| 1169 | TRIAD AUTO SALES INC | 848 S STATE RD | PLEASANT GROVE | UT | 84062 |
| 1170 | TRIPLE FOCUS LC | 1402 W STATE RD | PLEASANT GROVE | UT | 84062 |
| 1171 | TRUONG, THAI \& LAURA B JT | 9249 CANYON RD | CEDAR HILLS | UT | 84062 |
| 1172 | TUCKETT, GLADE B ET AL | 10939 N ALPINE HWY \#121PMB | HIGHLAND | UT | 84003 |
| 1173 | TURNER, JARED \& CRYSTAL JT | 1363 W 2180 NORTH | PLEASANT GROVE | UT | 84062 |
| 1174 | TWIGGS, SCOTT H \& CORAL L JT | 2035 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 1175 | ULLMAN, CHRISTIAN \& JENALE JT | 1788 N 350 WEST | PLEASANT GROVE | UT | 84062 |
| 1176 | UNICE, JOHN \& BARBARA JT | 84 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 1177 | UNTHANK, KENNETH L \& GWENDOLY TEES | 1890 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 1178 | UNUTOA, ERIC \& DORA A JT | 1036 W 500 NORTH | PLEASANT GROVE | UT | 84062 |
| 1179 | UNZAGA, HUMBERTO F \& LUCIA R JT | 2535 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 1180 | UTAH COMMUNITY FEDERAL CREDIT UNION | 1900 N CANYON RD | PROVO | UT | 84604 |
| 1181 | UTAH COMMUNITY FEDERAL CREDIT UNION | 188 RIVER PARK DR | PROVO | UT | 84604 |
| 1182 | UTAH VALLEY REAL ESTATE LLC | 76 N BALD MOUNTAIN DR | ALPINE | UT | 84004 |
| 1183 | VAL WARNICK FAMILY LLC THE | PO BOX 145 | MIDWAY | UT | 84049 |
| 1184 | VALENTINE, BRETT \& AIRAMINTA JT | 575 E 1000 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1185 | VALLEJO, NOEL | 10146 N MAPLE CT | CEDAR HILLS | UT | 84062 |
| 1186 | VAN ZANT, DOUGLAS L | 9560 N CANYON RD | PLEASANT GROVE | UT | 84062 |
| 1187 | VANDERWILT, CHRISTOPHER B \& S JT | 1320 W 600 NORTH | PLEASANT GROVE | UT | 84062 |
| 1188 | VELLA, J-MARLAN \& CHRISTINA I JT | 62 W 725 NORTH | LINDON | UT | 84042 |
| 1189 | VEST, FLOYD \& LARRY ET AL TEE | 7277 N 4850 WEST | AMERICAN FORK | UT | 84003 |
| 1190 | VILLAGE SQUARE AT PLEASANT GROVE L.C | 3575 N 100 EAST \#175 | PROVO | UT | 84604 |
| 1191 | VINCENT, JEFF L | 1625 W 140 NORTH \#62 | PLEASANT GROVE | UT | 84062 |
| 1192 | VINCENT, STEVEN L \& STEPHANIE JT | 342 MILLCREEK RD | PLEASANT GROVE | UT | 84062 |
| 1193 | VIROONCHATAPAN, EKAPOP \& NITN JT | 4986 EL MIRLO DR | OCEANSIDE | CA | 92057 |
| 1194 | VISTA DEL GROVE LEGACY LC | 2521 CHERRY GROVE WAY | SOUTH JORDAN | UT | 84095 |
| 1195 | WADLEY DEVELOPMENT CO LLC | 2405 W CENTER ST | PROVO | UT | 84601 |
| 1196 | WADLEY, ALEXANDER \& NELDA B TEE | 2508 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 1197 | WADLEY, ARVIL W \& HELEN H TEE | 90 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 1198 | WADLEY, CLIFTON J \& MARY R TEE | 2362 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 1199 | WADLEY, DON F \& BRENDA B JT | 1041 W 4000 NORTH | PLEASANT GROVE | UT | 84062 |
| 1200 | WADSWORTH, ENOCH A | 159 S PLEASANT GROVE BLVD \#23 | PLEASANT GROVE | UT | 84062 |
| 1201 | WAITKEVICH, STEPHEN A | 3826 S 2300 EAST | SALT LAKE CITY | UT | 84109 |
| 1202 | WAKAMATSU, NANETTE M \& WARREN JT | 125 E CENTER ST | PLEASANT GROVE | UT | 84062 |
| 1203 | WALDRON, ANN M | 65 N 1620 WEST | PLEASANT GROVE | UT | 84062 |
| 1204 | WALDVOGEL, STACEY B \& STACEY B | 1013 N 1600 WEST | PLEASANT GROVE | UT | 84062 |
| 1205 | WALKER, BILLY R \& PATRICIA JT | 2554 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 1206 | WALKER, CHARLES S \& MELISSA S JT | 578 S STATE ST | OREM | UT | 84058 |
| 1207 | WALKER, CLARENCE | 2195 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 1208 | WALKER, JAY R \& CAROL H JT | 1470 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 1209 | WALKER, KENT W \& JILL F TEE | 3865 N 900 WEST | PLEASANT GROVE | UT | 84062 |
| 1210 | WALKER, LLOYD J \& VERLA T TEE | 480 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 1211 | WALKER, MILDRED C TEE | 860 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 1212 | WALKER, RICHARD M \& AMY JT | 1246 W 3300 NORTH | PLEASANT GROVE | UT | 84062 |
| 1213 | WALKER, RONALD \& VERA D TEE | 345 E CENTER ST | LINDON | UT | 84042 |
| 1214 | WALKER, RONALD G \& VERA D JT | 930 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 1215 | WALL, KENNETH K \& ANGELA JT | 1727 W 1060 NORTH | PLEASANT GROVE | UT | 84062 |
| 1216 | WALLENTINE, DAVID A \& DIANA TEE | 632 N MURDOCK DR | PLEASANT GROVE | UT | 84062 |
| 1217 | WALTERS, DWAYNE C \& EVELYN JT | 680 S 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 1218 | WALTERS, DWAYNE C \& EVELYN F JT | 655 S 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 1219 | WALTERS, JOSEPH A \& PATSY J TEE | 23 W 800 NORTH | PLEASANT GROVE | UT | 84062 |
| 1220 | WANGEMANN, PAUL \& VONDA JT | 793 N LOCUST AV | LINDON | UT | 84042 |
| 1221 | WANLASS, CHRIS P | 4454 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 1222 | WARBURTON'S INC | 453 W 700 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1223 | WARBURTON, PAUL B \& NINA TEE | 1770 N 1520 WEST | PLEASANT GROVE | UT | 84062 |
| 1224 | WARD, DOUGLAS B \& DEBORAH R JT | 94 W 725 NORTH | LINDON | UT | 84042 |
| 1225 | WARDELL, MARTIN W \& LINDA M JT | 9730 CANYON RD | CEDAR HILLS | UT | 84062 |
| 1226 | WARNER, DIANE S TEE | 9675 CANYON RD | CEDAR HILLS | UT | 84062 |
| 1227 | WARNICK, BRYSON J \& EMILY K JT | 80 S 1485 WEST | PLEASANT GROVE | UT | 84062 |
| 1228 | WARNICK, CARL F \& JUNE W JT | 1136 W 3300 NORTH | PLEASANT GROVE | UT | 84062 |
| 1229 | WARNICK, DOUGLAS R \& SHARON R JT | 2552 N 860 WEST | PLEASANT GROVE | UT | 84062 |
| 1230 | WARNICK, JACQUELYN W | 3277 N 1450 WEST | PLEASANT GROVE | UT | 84062 |


| 1231 | WARNICK, KENT E \& SHELLIE L JT | 1309 W 3300 NORTH | PLEASANT GROVE | UT | 84062 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1232 | WARNICK, KYLE F | 1756 N 390 EAST | PLEASANT GROVE | UT | 84062 |
| 1233 | WARNICK, MARK DOUGLAS | 1434 W 3300 NORTH | PLEASANT GROVE | UT | 84062 |
| 1234 | WARNICK, PAUL R \& LISA P | 1492 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 1235 | WARNICK, STEPHEN L \& NELDA S JT | 1454 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 1236 | WARNICK, THOMAS L \& JODI L JT | 4438 W 8800 NORTH | AMERICAN FORK | UT | 84003 |
| 1237 | WARNICK, WILLIAM W \& DIANA TEE | 2785 N 1450 WEST | PLEASANT GROVE | UT | 84062 |
| 1238 | WARNOCK, D CARL \& CINDY H JT | 1977 W 800 NORTH | PLEASANT GROVE | UT | 84062 |
| 1239 | WARREN, MICHAEL \& CHARLENE JT | 2415 N 1050 WEST | PLEASANT GROVE | UT | 84062 |
| 1240 | WATERS, MARY L | 986 W 270 SOUTH \#101 | PLEASANT GROVE | UT | 84062 |
| 1241 | WE PROPERTY II LLC | 2845 N 900 WEST | PLEASANT GROVE | UT | 84062 |
| 1242 | WEBB, PETER J \& FRANKIE T JT | 648 E 80 NORTH | AMERICAN FORK | UT | 84003 |
| 1243 | WEBER, ROBBY L \& SHELLY JT | 2448 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 1244 | WELCH, DAVID TEE | 1641 W 50 NORTH | PLEASANT GROVE | UT | 84062 |
| 1245 | WELCH, GOLDEN \& EMILEE JT | 189 N 1630 WEST \#70 | PLEASANT GROVE | UT | 84062 |
| 1246 | WELLESLEY, CRAIG H \& CYNTHIA JT | 1393 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 1247 | WELLS, KENT C \& JANET M JT | 515 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 1248 | WELLS, ROBERT K | 2472 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 1249 | WEST, DON \& HEATHER D JT | 345 W 200 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1250 | WEST, KENNETH D \& DORORTHY F TEE | 910 E 400 NORTH | PLEASANT GROVE | UT | 84062 |
| 1251 | WEST, KERRY J | 1842 N 1200 WEST | LEHI | UT | 84043 |
| 1252 | WEST, LANCE C \& LESLIE G | 397 E 500 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1253 | WEST, LELA M TEE | 340 S LOCUST AV | PLEASANT GROVE | UT | 84062 |
| 1254 | WEST, MARY | 540 GROVE CREEK DR | PLEASANT GROVE | UT | 84062 |
| 1255 | WEST, PHYLLIS GARLAND TEE | 385 E 500 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1256 | WEST, ROYAL J | 1090 E 900 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1257 | WEST, ROYAL J | 1100 E 900 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1258 | WEST, STEVEN D \& DIANE N TEE | 200 N 950 EAST | PLEASANT GROVE | UT | 84062 |
| 1259 | WESTROC INC | 670 W 220 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1260 | WHALEY, ROBERT J \& CHRISTINE JT | 67 E 700 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1261 | WHITAKER, CAROL A ET AL | 2815 N 1020 WEST | PLEASANT GROVE | UT | 84062 |
| 1262 | WHITAKER, MATTHEW A \& CAROL A JT | 2816 N 1020 WEST | PLEASANT GROVE | UT | 84062 |
| 1263 | WHITELEY, KAYLON T \& JAN JT | 791 W 600 NORTH | LINDON | UT | 84042 |
| 1264 | WIGERT, JOHN R ET AL | 1467 W 80 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1265 | WILDE, L CLAIR | 10641 JACOB ASTOR WAY | SOUTH JORDAN | UT | 84095 |
| 1266 | WILLIAMS, CHRISTOPHER GEORGE VAUGHN | 845 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 1267 | WILLIAMS, DAVID M \& ANGIE B JT | 361 W 800 NORTH | LINDON | UT | 84042 |
| 1268 | WILLIAMS, KENT S \& CHARLENE | 1075 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 1269 | WILLIAMS, MELAYNE W | 3810 VALLEY VIEW DR | CEDAR HILLS | UT | 84062 |
| 1270 | WILLIAMSON FARMS L.L.C. | 250 BEECHWOOD DR \#120 | BOISE | ID | 83709 |
| 1271 | WILLIAMSON INVESTMENTS L.C. | 168 N 1200 EAST | OREM | UT | 84097 |
| 1272 | WILLIAMSON, ROBERT | 445 E STATE RD | PLEASANT GROVE | UT | 84062 |
| 1273 | WILLIAMSON, ROBERT LEON TEE | 3531 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 1274 | WILSON, BRUCE J \& MARNAE B JT | 236 W 310 NORTH | OREM | UT | 84057 |
| 1275 | WILSON, CRIS E \& DEBRA C | 1752 N 70 EAST | PLEASANT GROVE | UT | 84062 |
| 1276 | WILSON, DEVIN E \& MELISSA ET AL | 1579 W 80 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1277 | WILSON, GRANT M \& RETA R JT | 172 S 350 EAST | OREM | UT | 84058 |
| 1278 | WILSON, KEITH L \& DANA L JT | 1793 N 1300 WEST | PLEASANT GROVE | UT | 84062 |
| 1279 | WILSON, KEVEN L \& KAREN M JT | 345 W 700 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1280 | WILSON, MATTHEW J \& CARRIE J JT | 1635 E MURDOCK DR | PLEASANT GROVE | UT | 84062 |
| 1281 | WILSON, TYLER W | 297 S RIDGECREST DR | OREM | UT | 84058 |
| 1282 | WILTBANK, JAMES \& BOBI J JT | 2928 W 160 NORTH | PROVO | UT | 84601 |
| 1283 | WINDSOR, BRADNER L \& KATHLEEN JT | 2345 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 1284 | WINSLOW, ERNEST P SR TEE | 517 CENTRAL AV | ALAMEDA | CA | 94501 |
| 1285 | WINTERS, ELMA MERMA PROCTOR TEE | 71 S 1025 EAST | LINDON | UT | 84042 |
| 1286 | WINWARD, JULIE A | 83 N 1620 WEST | PLEASANT GROVE | UT | 84062 |
| 1287 | WISE, JAMES L \& RAQUEL TEE | 2211 N 600 WEST | PLEASANT GROVE | UT | 84062 |
| 1288 | WLM MANAGEMENT COMPANY 401K P AN INT | 758 S 400 EAST | OREM | UT | 84097 |
| 1289 | WMS PROPERTIES LLC | 6213 W 10830 NORTH | HIGHLAND | UT | 84003 |
| 1290 | WOOD, TRAVIS E \& RACHELLE L JT | 994 W 600 NORTH | PLEASANT GROVE | UT | 84062 |
| 1291 | WOODARD, RUSSELL D \& JANA L JT | 2634 CANYON RD | PLEASANT GROVE | UT | 84062 |
| 1292 | WOODBURY, W RICHARDS ET AL TEE | 2733 PARLEYS WAY \#300 | SALT LAKE CITY | UT | 84109 |
| 1293 | WOODEN, MEL J \& JULENE JT | PO BOX 169A | SPRINGVILLE | UT | 84663 |
| 1294 | WOODIS, CHARLES EMERSON | 226 N OREM BLVD | OREM | UT | 84057 |
| 1295 | WOODS, JAMES E \& VIRGINIA S JT | 3824 CANYON RD | PLEASANT GROVE | UT | 84062 |


| 1296 | WOODS, RANDY \& JOY G | 385 W 800 NORTH | LINDON | UT | 84042 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1297 | WOODSIDE HOMES CORPORATION | 127 S 500 EAST \#600 | SALT LAKE CITY | UT | 84102 |
| 1298 | WOODWARD, ROCK A \& PAMELA K JT | 1368 W 2600 NORTH | PLEASANT GROVE | UT | 84062 |
| 1299 | WOOLF, RICHARD \& LISA | 1625 W 50 NORTH | PLEASANT GROVE | UT | 84062 |
| 1300 | WOOTTON, JANET S TEE | 11022 N 5600 WEST | HIGHLAND | UT | 84003 |
| 1301 | WOOTTON, JANET S TEE | 11022 N 5600 WEST | HIGHLAND | UT | 84003 |
| 1302 | WOOTTON, JEFFREY L \& EMILY JT | 860 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 1303 | WRIGHT, DEREK \& KATRESE JT | 3323 N 1270 WEST | PLEASANT GROVE | UT | 84062 |
| 1304 | WRIGHT, JANELL | 1643 W 140 NORTH \#65 | PLEASANT GROVE | UT | 84062 |
| 1305 | WRIGHT, MATTHEW H \& SOKUNNARY JT | 2083 TUSCANY WAY | PLEASANT GROVE | UT | 84062 |
| 1306 | YANG, KYUNG A ET AL TEE | 5093 RIVER PARK WAY | PROVO | UT | 84604 |
| 1307 | YOUNG, DAYNE A \& KIMBERLEY H JT | 1517 W 80 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1308 | YOUNG, J STERLING \& TONYA A JT | 1850 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 1309 | YOUNG, MELVIN J \& DEANNA C JT | 1009 W 1800 NORTH | PLEASANT GROVE | UT | 84062 |
| 1310 | YOUNG, RICHARD J \& GWEN K | 1820 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 1311 | YUZON, CRAIG P \& ELLAVEE P JT | 228 S PROCTOR LA | PLEASANT GROVE | UT | 84062 |
| 1312 | ZABRISKIE, GARY K | 1740 W 700 SOUTH | PLEASANT GROVE | UT | 84062 |
| 1313 | ZENKIC, ESAD | 9580 CANYON RD | CEDAR HILLS | UT | 84062 |
| 1314 | ZITTING, BENJAMIN B \& JEAN S | 334 MILLCREEK RD | PLEASANT GROVE | UT | 84062 |
| 1315 | ZONTS, JARED | 150 N 100 EAST | PLEASANT GROVE | UT | 84062 |
| 1316 | ZUPAN, DENNIS B \& BETTY JT | 3985 N 900 WEST | PLEASANT GROVE | UT | 84062 |

## MAYOR'S MESSAGE

The City's fiscal year begins July 1, 2009. We are in the process of reviewing the budget for the 2009-2010 fiscal year. A special Council meeting will be held on Saturday, May 16th at 9 am in the Council chambers. During this session, the Council will review the budget submission, ask questions and direct any changes.

With the national recession upon us, sales tax revenues have fallen behind previous years by about $4 \%$. This prompted staff to trim the current budget spending in January to meet forecasted revenues. As a result, the City is on track to stay within revenue and expense projections without compromising essential services to the citizens and businesses.

Why is Pleasant Grove in stable financial condition during this recession? In 2007, the City was informed by Lindon that they would not be contracting for public safety with Pleasant Grove in 2008-2009. This amounted to a $\$ 1.8 \mathrm{M}$ reduction in revenue. The staff and Council set out over the remainder of 2007 and the beginning of 2008 to adjust its spending to match the reduced revenue. It achieved the new targets by July 1, 2008 in time for the current fiscal year. In addition, the City has maintained a conservative approach to budgeting and savings for the past 10 years.

When the recession hit during the latter part of 2008, the City was still in an ultra-conservative spending mode. This allowed the City to continue to operate and provide all essential functions and services without affecting staff, residents and businesses. We plan to continue this approach with the 20092010 budget to safe-guard the City from this economic downturn.

No single individual is credited with this financial good fortune. The entire staff and the Council worked together over the course of a year to tighten up, repair, reuse and conserve. The citizens understood the financial condition of the economy and were patient with the City by not requesting expanded services during this time. As a result, we are all benefiting from a conservative budget policy.

Please join us during our special budget session to observe how staff and Council work together to manage your resources. Please let the Council know of your approval and concerns about the 2009-2010 budget. Your comments are always encouraged and welcome.

## Mayor@PGCity.Org.

Michael W. Daniels, Mayor

## 2009 CONCERTS IN THE PARK

East Side of the new Community Center Every Sunday at 7:30 pm

June 7
. . . . . . . . . . . . . . . . . . . . . . . . . . . .Pleasant Grove Orchestra June 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Utah Children's Choir June 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Skyline Chorus June 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Walker Brothers

> BUILDING PERMIT REQUIRED FOR ACCESSORY BUILDINGS: Please remember to obtain building permits for all accessory buildings larger than 120 square feet in size. Also, before building any accessory building, check with Community Development for the proper setbacks, so you don't have to move your buildings after they are constructed or installed

Pleasant Grove Firefighters announce the annual

## Fireman's Breakfast

Please come join us for breakfast at the fire station,
110 South 100 East, Pleasant Grove.
Saturday, May 30, 2009, 6:00 a.m. to 11:00 a.m.
Good Food, Good Friends, Good Fun
Be There or Be Hungry!!!
Tickets are available at the station or at the door the morning of the breakfast.

## TRANSPORTATION MASTER PLAN OPEN HOUSE

On Wednesday May 13, 2009 from 6:30 to 8:00 p.m. Representatives from the City and Horrocks Engineers will present updates to the
Transportation Master Plan and take comments from the public. Themeeting will be held in the City Council Chambers at 86 East 100 South.

A draft copy of the plan will also be available on the City Website.

## UTAH COUNTY FAIR TIME:

Now is the time to begin planning and perfecting projects for the Utah County Fair. Check out the website for Open Class entry information. The Open Class contestants will include: gardeners, quilters, Dutch Oven enthusiasts, photographers, cooks and canners. For the first time, the Utah County Fair hosts a Dutch Oven cook-off, judged by the Dutch Oven National Champion.

As always, there is plenty of family friendly fare at the Fair: Carnival, animals, kids events and entertainment every day of the Fair.

Keep checking on the County Fair website.

## YOU'RE INVITED!

Kiwanis is a global organization of volunteers dedicated to changing the world, one child and one community at a time. The Pleasant Grove Kiwanis Club is a active group of men and women working together to make a difference in individual lives and community programs. Current opportunities to serve include: Hope of America awards, Strawberry Days events and rebuilding Kiwanis Park at the mouth of Battle Creek Canyon. We welcome your suggestions for the park and involvement in our organization. Learn more at http://www.pgkiwanis.org/ or call Mike Chamberlain at (801) 830-5585.

## UTAH CO. BEEKEEPERS

The Utah County Beekeepers Association (UCBA) would like to offer the citizens of your area the service of honey bee swarm removal (at no charge). Honeybees swarm from March to July and the event, although relatively harmless, can create quite a stir to the uninitiated. To facilitate the removal of swarms, your contact people can either call me directly or instruct the citizen(s) to do so utilizing the information below. (phone, email or web visit). Once the call is received, they will call the beekeepers on our list to retrieve the swarm. Alternately, a copy of local beekeepers is also available on our website, if you prefer to call the beekeeper for your area directly. If you have any questions, please Call Neil Shelley at 801-822-4114, or visit the website at utahcountybeekeepers.org.

## 48 HOUR PARKING ON STREETS: Please be reminded of the City parking ordinance, which does not allow for more than $\mathbf{4 8}$ hour parking on the street.

## DEAR RESIDENT OR HOME OWNER

This letter is help you better understand the process of the Pressurized Irrigation Water System (secondary water).

Spring: The City is starting to pressurize the secondary water system at this time, please check your valve to make sure that is has been turned off from the winter months. About April 15th we start supplementing the lines to the system from the aqueduct; even though there is water in the system we ask that you wait until May 1st to start watering. You should open your valve slowly to check for leaks and broken pipes. If you have a broken pipe it is most likely to have been frozen throughout the winter months. The broken line could be from a low spot in the pipe where the water couldn't drain properly and froze. We suggest that you put a drain in where the pipe was broken when you fix your pipe.

In order for us to operate the system more efficiently, until the final tank is completed in mid august, we are asking you to help balance the system by following a watering schedule. This requires watering during the day as well as at night. We recognize that watering during the day is less efficient, but it is necessary to better balance water use with supply. We ask that if you have an even house number to water during the hours of 6:00 a.m. to 6:00 p.m. and those with odd house numbers water during the hours of 6:00 p.m. to 6:00 a.m. Please remember that we only water 6 days a week, Monday through Saturday and no watering on Sunday.

Fall: The watering period is normally complete in October. Typically the water to the aqueduct is turned off about October 10th. We will begin draining the system at this point. You can drain your lines and shut off the valves to your system anytime after this date. Failure to do this may cause damage to your system come next spring. The cities responsibility ends at the city valve. If you have any questions please call the Public Works Office at 801-785-2941.
Thank you
Pleasant Grove City Public Works

GUTTER CLEAN UP: Now is a good time
to make sure your gutters and storm drains are cleaned to prevent flooding.

## PGBA GOLF TOURNAMENT!

Spring's in full swing! Dust off your golf clubs and gather your teams for the annual *Pleasant Grove Business Alliance Golf Tournament!* Thursday, June 4, 2009. Registration at 7:30 am, Scramble Format start at 9:00 am. Cost is $\$ 400$ per team or $\$ 100$ per person. Price includes green fees, breakfast, lunch, snacks, gift bags. Prizes will be awarded. Registration deadline is May 20, 2009. For more information, or to register your team, call 801-380-3179 or visit the PGBA website *www.pbgaut.com.*

Please join the Pleasant Grove Business Alliance the second Friday of each month for our *Monthly Member Meeting.* May's meeting features Representative Craig Frank speaking about recent legislative changes that may affect your business. Come prepared with questions or concerns. Meeting is free to attend and is open to all businesses and citizens. A $\$ 9$ lunch is available for purchase. You must RSVP to reserve a lunch. Call 801-380-3179 or visit the PGBA website, *www.pgbaut.com.

## FOX HOLLOW GOLF CLUB

We were so excited about the number of families that took advantage of the special last month that we decided to run it again in May. This is the time to work out all the kinks in your swing on the driving range.

Please bring a copy of your newsletter into the Pro Shop for this special offer.

## Buy one small bucket of Balls and get the second one free! Offer good until the end May 2009

Watch for future specials throughout the year.
We are also looking for a few volunteers to help throughout the year at the golf course. If you are interested or have questions please call Judy at 801-319-2291 and leave you name and number.

## CENSUS TO BEGIN ADDRESS CANVASSING OPERATIONS

Beginning in late March 2009 the Census Bureau will be sending out address canvassers as a part of early operations. This workforce will walk or drive through neighborhoods to check that all addresses are in our database when the questionnaire is delivered in March 2010. This early operation is vital to ensuring a complete and accurate count. Each address canvasser will be equipped with a laptop or a hand held computer.

Census workers wear an official identification badge. Many address canvassers carry U.S. Census Bureau bags, making them easier to identify.

Many people don't realize that the Address Canvassing operation occurs as much as a year ahead of the official Census day on April 1, 2010. Address Canvassing is the first large field operation for the 2010 Census and it is designed to identify all housing units and other living quarters. Listers will use hand held computers with maps on them to verify and list structures, including the collection of GPS coordinates for each location. All information collected by Address Canvassers and other Census employees is kept strictly confidential and cannot be shared with any other persons, institutions, or agencies.

If you have questions or concerns please contact your local census office at 801-736-5040. For more information about the 2010 Census visit www.census.gov.

## GREETINGS FROM YOUR FIRE CHIEF

April's showers have brought us May's flowers. No, we didn't plant a garden. We did begin another renovation project in the fire station. This one began as a small April sprinkle and ended in a deluge. Our small project, that began with moving just one little wall, exploded into a thunder storm demolition and re-building.

If you are familiar with the station, you will notice a big change. If you're not too familiar with this building, things may not seem extraordinary to you, but they are.

The changes we have made will help us serve you better and provide better facilities for the fire fighters.

I owe a bucket full of thanks to the fire fighters. Every crew worked tirelessly to accomplish this change. Plus, each crew has been somewhat displaced for the better part of the month. I appreciate their patience.

However, there are two local companies that stepped up and really made a difference. These companies participated in different facets of this project and generously supplied materials and labor. It is impossible for me to even calculate the value of their work, because it goes far and away beyond any assigned dollar figure. Because of them, this project turned out so well. Muddy Boys Full-Service Drywall generously donated much of the materials and labor for this project and Jespersen Painting provided the finish work. I would like to publically thank Mr. Ray Taylor, aka Muddy Boys Inc., and Mr. Brett Jespersen, for the donation of the quality work, and materials. In these times of economic difficulties, I understand the significance and impact of their generous donation. Their donation truly optimizes community service. Thank you!

We hope to see ya'll at the Fireman's Breakfast on May 30th, 6:00 am to 11:00 am. If you can't make it to the breakfast, drop by any time for a quick tour of the station, we would love to show you around.

## TIMPANOGOS SPECIAL SERVICE DISTRICT GREENWASTE/COMPOST

Please be advised that the greenwaste/compost facility has changed thehours of operation. This change is effective April 20, 2009. Greenwaste may be dropped off Monday - Friday from 7:00 a.m. to 5:00 p.m. and on Saturday from 7:00 a.m. to 4:30 p.m. Compost may be picked up Wednesday - Friday from 7:00 a.m. to 5:00 p.m. and Saturday from 7:00 a.m. to 4:30 p.m. The facility will be open on Memorial Day and Labor Day but will beclosed for the other major holidays.

## STRAWBERRY DAYS CONCERT

Strawberry Days Concert is June 16 starting at 7:30 in Veterans Park. The concert will feature Flashback Brothers with free strawberries and cream--

The Flashback Brothers will take you back to the days when bands played for dances and events.

They are a group of seasoned musicians who grew up playing and dancing to live music.

You will hear classic rock hits from the 50's, 60's, 70's and 80's; everyone a guaranteed crowd pleaser.

[^25]
## PG BEAUTIFICATION/ SHADE TREE COMMISSION

It's a good time to make sure your sprinklers are watering effectively. For a FREE sprinkler check, call Julia Tuck at 801-851-8467 and leave your name, phone number, address and city, or send her an email at juliatuck@usu.edu The fine folks do these checks will come to your home or business, check the roots of your grass, your soil type, your water pressure and will set our cups to see how evenly your water is distributed. Optimize your water usage by setting an appointment today.
To receive a weekly email advisory informing you of potential problems and recommended solutions regarding fruit and ornamental tree problems, send an email to Marion Murray at marion.murray@usu.edu and ask to be put on the "Integrated Pest Management Tree Fruit Advisory" email list.

The Pleasant Grove Beautification Commission members will be giving out "Yard of the Month" awards again this year in June, July and August. Have fun creating in your yard and you just may be the recipient of this coveted award!
More article is available at www.plgrove.org.

## RECREATION NEWS

For more detailed information please visit the Pleasant Grove Website at www.pgcity.org and click on recreation.
Soccer Registration (4 yrs old to 8th Grade) - Registration is May 22nd thru June 20th. League season will start on Saturday, July 27.
Jr. High Age Dance - School's Out For Summer Stomp - Friday, May 22nd from 7:00 to 9:30 p.m. Cost: With ID \$3, Without ID \$4. SCHOOL DRESS CODE REQUIRED! Parents are welcome.
Adult Coed Softball - (16 yrs \& older) Registration will begin Friday, May 1st and go until filled.
We have some openings still available in the following camps and clinics. Call the Recreation Department for details.

Itty Bitty Ball (3 \& 4 yr olds) - June 9, 11, 16, and 18 Soccer Camp Session I ( 6 to12 yrs) - June 1-4 Soccer Camp Session II (6 to 12 yrs) - June 8-11 Golf Club (7 to18 yrs) - Month of June (Tuesdays) Volleyball Camp (7 yrs \& older) - July 13-16 Basketball Camp (1st to 6th Grades) - July 20 - 23
SUMMER GYMNASTICS - This 6-week program (AM classes) begins June 22nd and goes through July 31st. To register call Kim Christensen at 492-3961.
The Jr. Olympic Skills Competition is a FREE skills competition that provides both, boys and girls ages 8 to 13, the opportunity to showcase their athletic abilities in four sports. Age groups consist of $8 / 9,10 / 11$, $12 / 13$. Age is determined as of Aug. 31, 2009. Saturday, May 9th, 9:00am to 11:30am at the Pleasant Grove Community Center and PGHS Track \& Field
Swimming Lessons - Lessons begin Monday, June 1st. New sessions will begin every other Monday through the summer.
Swim Team - Registration April 27-30 3:30-6:00 p.m.
Pleasant Grove Resident Passes
Swimming Pool - You MUST bring your city bill for proof of residence. (This is for the benefit of the P.G. taxpayer) Non-resident prices will be charged unless presented. Driver's Licenses and addresses on checks are not acceptable.

Early Sign-ups for lessons, passes, and parties
Registrations for lessons, passes \& parties will be at the swimming pool on the following days from 3:30 until 6:00 p.m.

April 27-30 Pleasant Grove Residents Only
May 4-7 and 11-14 All Others
Regular sign ups will begin Mon, May 18th
More programs are listed at the city website visit www.pgcity.org and click on recreation

## PG ARTS COMMISSION

The Pleasant Grove Arts Commission is seeking volunteers to help with a variety of programs. Discover the rewards of serving your community by offering your hands, skills, knowledge, great ideas, talents and most of all, your willing heart. Lily Tomlin said, "I always wondered why somebody didn't do something about that. Then I realized I was somebody". Get involved! For more information, please visit the library to pick up an application, or download it from our website at http://www.pgcity.org/pgarts. You may also contact Wendy Vincent at utahwendy@gmail.com for more information.

## UNITED WAY SUMMER OF SERVICE

United Way of Utah County is excited to announce its Summer of Service Program. The program consists of weekly service projects organized for youth volunteers throughout the county during the months of May-August.

We feel strongly that the Jr.High and High School-aged students of Utah County will benefit greatly as they become involved in meaningful and edifying service events. Not only will their participation provide a wholesome alternative to summer boredom, anxiety, loneliness or mischief, it will also open their hearts and minds--giving them a greater vision of their personal future. If you want more information, please contact Raquel Lopez, United Way of Utah County at 801-691-5330.

## WATERING/IRRIGATION GUIDE--

Division of Water Resources ~ North Central Utah March - No irrigation reccomended; April - No irrigation reccomended; May - 21 minutes every 4 days; June - 21 minutes every 3 days; July - 21 minutes every 3 days; August -21 minutes every 3 days; September - 21 minutes every 6 days.

Minutes shown are to spray heads, double time zones for rotor heads.

If you have a poor-draining soil type like clay, water 3 separate times for 7 top 9 minutes.

## DRIVER SAFETY CLASS

An AARP "Driver Safety class for those 50 and older will be taught at the Jacobs Senior Center (242 W. 200 S., Pleasant Grove) May 4th from 1:00 to 5:00 PM. This is a new 4 hour course. To register, call the Senior Center (785-2818). Fees for taking the class are as follows. AARP members with their membership card $\$ 12.00$. Those who don't present their card and others' $\$ 14.00$. Checks made out to AARP are preferred. Completion of the class may qualify participant for a discount on their automobile insurance.

## PARKING VEHICLES ON FRONT LANDSCAPING AREA OF RESIDENCE: City Code does not allow for parking of vehicles on the front landscape portion of residences. This includes cars, trucks, boats, trailers, sheds, etc.

## WATER QUALITY REPORT

The Pleasant Grove Water Department is pleased to present the 2008 Water Quality Report. A copy of the report may be viewed online at www.pgcity.org. You may also pick up a copy of the report at City Hall, 70 South 100 East or Public Works, 323 West 700 South. Our goal is to provide you with safe and dependable drinking water by continually improving the water treatment process and protecting our water resources.

## LIBRARY NEWS

Children's Book Week - May 11th to 15th. All activities begin each evening at 7:00 pm downstairs of the library.

- Monday- Mad Science. Spark Children interest in science with this presentation. Designed to amaze and delight children of all ages.
- Tuesday- Twilight Tales Enjoy madness with Miss Kammi!
- Wednesday- "Rockin Utah."Discover what families can do in Utah State Parks from the Rockin' Utah (Reaching Out Connecting Kids in Nature) Program representatives
- Thursday- Read with Great Reads! The book review will be "Sarah Plain and Tall"with games and crafts. Everyone invited!
- Friday-Pajamas and a movie night. Come enjoy "Bedtime Stories" starring Adam Sandler.
Great Reads for Girls: A Mother Daughter Book Club: Girls ages 816 with Mom or other caring adult. Join us for lively discussions, activities, friendship and fun! Sign up and Pick up a "Great Reads" booklist at the front desk. This month's book is "Sarah Plain and Tall" by Patricia MacLachlan.
ITeens: 1st and 3rd Tuesdays at $4: 30 \mathrm{pm}$. The Teen Book group is for 7th grade and up. Games, crafts, book reviews. Also hear about many other great books from other teen readers!
R.E.A.D. Book Group: 10:00 am. Second Thursday of the month. Everyone who is interested is invited. This month will be "Home" by Marilynne Robinson. Reviewed by Tammra Salisbury.
BookEnders: 7:00 pm on the last Thursday of the month. Adults. BookEnders is a new discussion and reading book group. This month's book is "Pope Joan" by Donna Cross. Summer Reading "Be Creative @ Your Library" Registration starts May 12th.
Classes are limited in size.
Online registration, phone calls or in person.
Cost $\$ 5.00$ for 8 weeks of Creativity!
Check it out on line!


## DOOR TO DOOR SALES

With warmer weather coming residents of Pleasant Grove will probably notice an increase in solicitation by door-to-door solicitors. We would like to remind you that it is illegal to solicit door-to-door in Pleasant Grove without an approved Solicitor's License. Solicitors are required to apply for a city license and obtain a BCI background investigation. Each solicitor will be issued a solicitors identification badge to be carried on their person. Company information and solicitor's photo identification will be included on this badge. These requirements and procedures are set in place for the welfare and safety of all residents of Pleasant Grove City.

As a reminder, a majority of solicitors knocking on your door have not contacted the city, or followed city requirements, and will not have a solicitor's license. What can you do to protect yourself from having a stranger come to your door trying to sell something? First, you should always ask the individual, "Can I see you're Pleasant Grove City Solicitor’s Badge?" If the solicitor cannot produce this badge, it is recommended that you decline to do business with them and contact the police department at 801-785-3506.

Another procedure that can be done is to post a "No Soliciting" sign at the door. Per City code, by displaying this sign which 'shall be posted on or near the main entrance door or on or near the property line adjacent to the sidewalk leading to the residence, constitutes to any solicitor that the inhabitant of the residence does not desire to receive and/or does not invite solicitors.' If such a sign is posted, it is a violation of the ordinance for any solicitor to engage or attempt to engage in door-to-door solicitation. (Chap. 3-15-17, 18)

For more questions about the City's solicitation ordinance please contact the Business Licensing Office at 801-785-5045.

## Open House Attendance List

## PLEASANT GROVE CITY TRANSPORTATION MASTER PLAN OPEN HOUSE ATTENDANCE LIST





## Open House Displays





## PLEASANT GROVE CITY

 86 EAST 100 SOUTHPleasant Grove, UT 84062

## PLEASANT GROVE CITY <br> TrRANSPORTTATION MASTER PLAN

Please submit this comment form before leaving the meeting tonight, or mail your comments to PLEASANT GROVE CITY, 86 EAST 100 SOUTH, Pleasant Grove, UT 84062. You may also e-mail comments to dlewis@pgcity.org; all comments must be received by the City on or before May 28, 2009. We greatly appreciate your input and participation in this process.

Name:
Address:
City: $\qquad$ State:
Zip:

## Phone Number:

$\qquad$ E-mail: $\qquad$

1. Are you in favor of the proposed Roadway Master Plan? Yes $\square$ No $\square$ If no, why?
2. Are you in favor of the proposed Trail/Bicycle Master Plan? Yes $\square$ No $\square$ If no, why?
3. Are you in favor of the proposed Transit Master Plan? Yes $\square$ No $\square$ If no, why?
4. Please list any comments, concerns, and/or suggestions you may have relating to the overall Transportation Master Plan.

Please submit this comment form before leaving the meeting tonight, or mail your comments to PLEASANT GROVE CITY, 86 EAST 100 SOUTH, Pleasant Grove, UT 84062 . You may also e-mail comments to dlewis@pgcity.org; all comments must be received by the City on or before May 28, 2009. We greatly appreciate your input and participation in this process.
Name: Muriel Elliott
Address: 665 W 4000 N
city: Pleasant' Grove state: Lt zip: 84062
Phone Number: $801-7855647$
$\qquad$ E-mail: Murre l K El loot a yahoo. Con

1. Are you in favor of the proposed Roadway Master Plan? Yes $\square$ No if no, why?

It is much safer the way ct is. Cars well go naweh faster urith a wider road. It would destroy our
$\qquad$
$\qquad$
$\qquad$
3. Are you in favor of the proposed Transit Master Plan? Yes $\square$ No If no, why?
$\qquad$
$\qquad$
$\qquad$
4. Please list any comments, concerns, and/or suggestions you may have relating to the overall Transportation Master

Plan. I'ue known it was commence for a lone tense. Q Thine there are ways that would not Lase sue k an impact on so many people
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Please submit this comment form before leaving the meeting tonight, or mail your comments to PLEASANT GROVE CITY, 86 EAST 100 SOUTH, Pleasant Grove, UT 84062. You may also e-mail comments to dlewis@pgcity.org; all comments must be received by the City on or before May 28, 2009. We greatly appreciate your input and participation in this process.
Name: hade 4 KayLee Fox
Address: $\qquad$
City: $\qquad$ Pleasant Grave State: UV Zip: 84062

Phone Number: $\qquad$ 801-796-3903 E-mail: $\qquad$ WFOX 3903 M MN. Com

1. Are you in favor of the proposed Roadway Master Plan? Yes $\square$ No $\varangle$ if no, why?

We disagree with the rounabout proposal@ 4000 N. 900 W . There is not enough growth or traffic flow potential to ever support or justify a roundabout at that location.
2. Are you in favor of the proposed Trail/Bicycle Master Plan? Yes $\square$ No $\square$ If no, why?
$\qquad$
$\qquad$
$\qquad$
3. Are you in favor of the proposed Transit Master Plan? Yes $\square \quad$ No $\square$ If no, why?
$\qquad$
$\qquad$
$\qquad$
4. Please list any comments, concerns, and/or suggestions you may have relating to the overall Transportation Master
 unnecessary.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## PLEASANT GROVE CITY <br> TRANSPORTATION MASTER PLAN

Please submit this comment form before leaving the meeting tonight, or mail your comments to PLEASANT GROVE CITY, 86 EAST 100 SOUTH, Pleasant Grove, UT 84062. You may also e-mail comments to dlewis@pgcity.org; all comments must be received by the City on or before May 28, 2009. We greatly appreciate your input and participation in this process.

Name:


Address: $\qquad$
City: $\qquad$ State: $\square$ Zip: 84062

Phone Number: $\quad 435 \cdot 201-7822$ E-mail: $\qquad$ ajamario (egmailicam 1. Are you in favor of the proposed Roadway Master Plan? Yes No if no, why?
2. Are you in favor of the proposed Trail/Bicycle Master Plan? Yes) No If no, why?
3. Are you in favor of the proposed Transit Master Plan? Yes No If no, why?
4. Please list any comments, concerns, and/or suggestions you may have relating to the overall Transportation Master Plan.
$\qquad$ TRAFFIC/TRANSPORTATION PLANS. FROM WHAT I HAVE SEEN IN THE MASTERPLAN, THE CHANGES ARE NECESSARY AND VITAL TO THE COMTINLLED GROWTH OF PLEASANT GROVE,

Please submit this comment form before leaving the meeting tonight, or mail your comments to PLEASANT GROVE CITY, 86 EAST 100 SOUTH, Pleasant Grove, UT 84062. You may also e-mail comments to dlewis@pgcity.org; all comments must be received by the City on or before May 28, 2009. We greatly appreciate your input and participation in this process.
Name: Dennis z/ullinger
Address: 637 West Moo North
city:Pleasant Grove stat:?1 zip: 84062
Phone Number: 807855991 E-mail: hull 818 e alpine Kl2.ut.us

1. Are you in favor of the proposed Roadway Master Plan? Yes $\square$ No $\boxtimes$ If no, why?

Houses on 4000 Worth are too close to the road -if widened to a $70^{\circ}$ road on $106^{\prime}$ right of way nearly every house on the road would need to be condemn? I if would Be better to have, they
 2. Are you in favor of the proposed Trail/Bicycle Master Plan? Yes $\square$ No $\square$ If no, why? w de. The Trails look goad, bot there should be more Aces into Mt. Malagony from more points thad e just the Forest Service Trail!
3. Are you in favor of the proposed Transit Master Plan? Yes $\square$ No if no, why?

VTA is a joke. It serves only those along state street. Pleasant Grove shouldn't even participate unless they really serve our community. The canyon Rd tum is just
4. Please list any comments, concerns, and/or suggestions you may have relating to the overall Transportation Master Plan. If 4000 North is widened the hill on Canyon Rd to the North would need to be removed. A stop light there would cause many Accidents un uss the hill were removed. Ihaue a hard fire furn ing South 14000 N without being run over. So far the widening of 4000 N 15 being done on just the South side. It heeds to be widened equally on both sides.

Please submit this comment form before leaving the meeting tonight, or mail your comments to PLEASANT GROVE CITY, 86 EAST 100 SOUTH, Pleasant Grove, UT 84062. You may also e-mail comments to dlewi@@ggcity.org; all comments must be received by the City on or before May 28, 2009. We greatly appreciate your input and participation in this process.

Name: $\qquad$ Cutie Larsen

Address: 993 west 1800 No

City: $\qquad$ Pleasant Grove State: $\qquad$ Zip: 84062
Phone Number: $\qquad$ $801-785-3130$ E-mail: C lutielansen@mac.com somewhat

1. Are you in favor of the proposed Roadway Master Plan? Yes $\square$ No $\boxtimes$ if no, why?

Think it is too much even with the growth we haves had, things are much slower. Pwould like to sq e good based rood rejpan throughout, I am afraid the master Plan will lock the otis no

2. Are you in favor of the proposed Trail/Bicycle Master Plan? Yes $\square$ No $\square$ if no, why? cobra getting in to $C$ tim the Mont think the bike lanes ore good in the stiesto. tut they should be located offroad -
3. Are you in favor of the proposed Transit Master Plan? Yes No If no, why?
$\qquad$
$\qquad$
$\qquad$
4. Please list any comments, concerns, and/or suggestions you may have relating to the overall Transportation Master Plan.

Go a little more slowly. Dor t snrakit through the City Council before people ar a a wars this is a bigdral - and well require public support. Maybe do it in stages especially once theotigeno sedruqging economically. PG is dome sa well we should have money to put m to stree it repair (maintenanes)

Please submit this comment form before leaving the meeting tonight, or mail your comments to PLEASANT GROVE CITY, 86 EAST 100 SOUTH, Pleasant Grove, UT 84062. You may also e-mail comments to dlewis@pgcity.org; all comments must be received by the City on or before May 28, 2009. We greatly appreciate your input and participation in this process.

Name: $\qquad$ Debbie Levin

Address: 866 W 4000 n

City: Pleasant Grove
$\qquad$ State: $\qquad$ UH Zip: $\qquad$
Phone Number: $\qquad$ 801-701.0440 E-mail: debilein @hotmail.com

1. Are you in favor of the proposed Roadway Master Plan? Yes $\square$ No If no, why?
$\qquad$ is way to steep to have a light, you cant slop in the winter or you at stet! et id a very dangerons rood te get onto. I thee this rived shoved He a ene way pred or a
2. Are you in favor of the proposed Trail/Bicycle Master Plan? Yes $\square$ No $\square$ If no, why?
$\qquad$
$\qquad$
$\qquad$
3. Are you in favor of the proposed Transit Master Plan? Yes $\square$ No $\square$ If no, why?
$\qquad$
$\qquad$
$\qquad$
4. Please list any comments, concerns, and/or suggestions you may have relating to the overall Transportation Master Plan. $\qquad$ removed to widen the road. Then are vern historical over 150 yens ald. This wold be disaster to have this happen. Weds cant discribe whet this would do to alost of people. alone!!

Please submit this comment form before leaving the meeting tonight, or mail your comments to PLEASANT GROVE CITY, 86 EAST 100 SOUTH, Pleasant Grove, UT 84062. You may also e-mail comments to dlewis@pgcity.org; all comments must be received by the City on or before May 28, 2009. We greatly appreciate your input and participation in this process.
Name: Fred True: Levin
Address: $3939 \omega 9600 \mathrm{~N}$
City: $\qquad$ Cedar Hills Stale: OT zip: 84062
Phone Number: 801-785-3356 email: trudileutu @ hotarail com 1. Are you in favor of the proposed Roadway Master Plan? Yes $\square$ No If no, why?
road is widened on 4000 N most of the houses will have to be condemned. A better solution would be to wide u
 issue Will te put in place
2. Are you in favor of the proposed Trail/Bicycle Master Plan? Yes $\square$ No \& if no, why?

There really is not enough access to the trails
3. Are you in favor of the proposed Transit Master Plan? Yes $\square$ No if no, why?

It is almost impossible to Use UTA because the stops are vet convenient + too far apart and the time is not frequent enough to assist us in our travel
4. Please list any comments, concerns, and/or suggestions you may have relating to the overall Transportation Master If If 4000 N . should be widened the street should be widened on either side. Again, the road south of 4000 N is wide enough to accomadate the proposed road.

Please submit this comment form before leaving the meeting tonight, or mail your comments to PLEASANT GROVE CITY, 86 EAST 100 SOUTH, Pleasant Grove, UT 84062. You may also e-mail comments to dlewis@pgcity.org; all comments must be received by the City on or before May 28, 2009. We greatly appreciate your input and participation in this process.

Name: $\qquad$ kaph Levi
natures: 866 W 4000 N
City: $P G$ State: $\qquad$ Zip:
Phone Number: $\qquad$ 8017010440 E-mail: $\qquad$

1. Are you in favor of the proposed Roadway Master Plan? Yes $\square$ No If no, why?

The intersection a 900 West 4000 North is a steep hill and people get stuck at top of the hill and when they attempt to go out on to canyon road they create ALOT of near misses and accidents
2. Are you in favor of the proposed Trail/Bicycle Master Plan? Yes No If no, why?
$\qquad$
$\qquad$
3. Are you in favor of the proposed Transit Master Plan? Yes, No If no, why?
$\qquad$
$\qquad$
$\qquad$
4. Please list any comments, concerns, and/or suggestions you may have relating to the overall Transportation Master Plan. 4000 North needs to be a one way street going down hill only to eliviate accidents, and the plan to putin a round about a the bottom of that hill would require removal of my 150 year old trees which WILL NOT HAPPEN PDD Over my dead body will those trees be messed with - Once again the solution is to make 4000 Nort a ONE WAY STREET or possibly a dead end street

Please submit this comment form before leaving the meeting tonight, or mail your comments to PLEASANT GROVE CITY, 86 EAST 100 SOUTH, Pleasant Grove, UT 84062. You may also e-mail comments to dlewis@pgcity.org; all comments must be received by the City on or before May 28, 2009. We greatly appreciate your input and participation in this process.

Name: $\qquad$ KathryN R. Phelow
Address: 1040 East 900 South
City: $\qquad$ Grove State: Ut zip: $84062-4207$
Phone Number: (801) $785-3705 \quad \mathrm{E}$-mail: $\qquad$

1. Are you in favor of the proposed Roadway Master Plan? Yes 圏 No If no, why?
$\qquad$
$\qquad$
$\qquad$
2. Are you in favor of the proposed Trail/Bicycle Master Plan? Yes No $\square$ if no, why?
$\qquad$
$\qquad$
$\qquad$
3. Are you in favor of the proposed Transit Master Plan? Yes 䁪 No If no, why?
$\qquad$
$\qquad$
$\qquad$
4. Please list any comments, concerns, and/or suggestions you may have relating to the overall Transportation Master Plan. $\qquad$ and $1 / 50$ East?

My property borders this road, Will I have access to get onto thus road from my back Yard?

Please submit this comment form before leaving the meeting tonight, or mail your comments to PLEASANT GROVE CITY, 86 EAST 100 SOUTH, Pleasant Grove, UT 84062. You may also e-mail comments to dlewis@pgcity.org; all comments must be received by the City on or before May 28, 2009. We greatly appreciate your input and participation in this process.

Name: Heidi Potter

Address: 634 w .4000 N .
City: $\qquad$ Pleasant grove State: UT 2 zip: 8406 V

Phone Number: $\qquad$ $801-822-6434$ E-mali: heidigoose@hotmaul.com

1. Are you in favor of the proposed Roadway Master Plan? Yes $\square$ No If no, why?

Cars already go way too fast down 4000 N ., and don't see us woken pulling out of the anvewayp because of all the trees. $H$ is Just too g dangerous to bung more traffic $\rightarrow$
2. Are you in favor of the proposed Trail/Bicycle Master Plan? Yes No If no, why?
$\qquad$
$\qquad$
$\qquad$
3. Are you in favor of the proposed Transit Master Plan? Yes No If no, why?
$\qquad$
$\qquad$
$\qquad$
4. Please list any comments, concerns, and/or suggestions you may have relating to the overall Transportation Master
$\rightarrow$ Plargom this road, especially on a steep hill. We pull several cars out of the ditches in the winter for going too fast. This will be a disaster, espedally during winter months. Please don't take hay the beautful teens and someunat peaceful atmosphere we have evjoved on this road for years!
$\qquad$
$\qquad$

1．Are you in favor of the proposed Roadway Master Plan？Yes $\square$ No If no，why？
－ oo costly for the population to justify
He costs let the developers pignus

2．Are you in favor of the proposed Trail／Bicycie Master Plan？Yes $\square$ No $\square$ if no，why？
plant see it－Sounds like a good idea－we have a fris unowned of bicyclist of jo ope exercising in these pack 3．Are you in favor of the proposed Transit Master Plan？Yes $\square$ NoD（it no，why？ the one in find of lome peak thigh school we are－

4．Please list any comments，concerns，and／or suggestions you may have relating to the overall Transportation Master Pan．Seams like ain eylorlentant cinount of nones for the amount of cats we see use these paras at this print in time－
Wee would like to know who did He survey of geod coos dailies

Please submit this comment form before leaving the meeting tonight, or mail your comments to PLEASANT GROVE CITY, 86 EAST 100 SOUTH, Pleasant Grove, UT 84062. You may also e-mail comments to dlewis@pgcity.org; all comments must be received by the City on or before May 28, 2009. We greatly appreciate your input and participation in this process.

Name: $\qquad$ Wendy Rupper
Address: 445 Valley View Dr
City: $\qquad$ Pleasant Grove State: $\square$ UT Zip: 84062

Phone Number: $\qquad$ 801) $796-7520$ E-mail: wendy.rupper@gmail.com

1. Are you in favor of the proposed Roadway Master Plan? Yes No If no, why?

The Locust realignment is a mondertul idea, however the saftery of the bundabout of locust +200 concems me. Stop sighs are much gafer for pedestrian traffice and i walk that way frequently
2. Are you in favor of the proposed Trail/Bicycle Master Plan? Yes No If no, why? Sidewalks needed also Side Sidewalks, in my opinion, are a greater priority than widening for bike lanes. If its either or pick sidewalks! Have you considered interconnecting HANOKAP routes as well. The majority of side walks 3. Are you in favor of the proposed Transit Master Plan? Yes No $\square$ if no, why?

Wishful thinking for 20 years in the Ruture
4. Please list any comments, concerns, and/or suggestions you may have relating to the overall Transportation Master Plan.
Plan. I'm in desperater need of side nalks with handicap cramps especially on the Noopner of Locust and Orchard l PLEASE make this a prioint!! The new recreation center Mates much more pedestrian traffic on Locust; and, at the speed most people drive on that road, it is unsafe for pedestrians to walk on the side of the road.

Please submit this comment form before leaving the meeting tonight, or mail your comments to PLEASANT GROVE CITY, 86 EAST 100 SOUTH, Pleasant Grove, UT 84062. You may also e-mail comments to dlewis@pgcity.org; all comments must be received by the City on or before May 28, 2009. We greatly appreciate your input and participation in this process.

Name: $\qquad$ Jeff Thompson

Address: $\qquad$ 617 Canyon Lien

City: $\qquad$ G

State: UT Zip: $\qquad$ 84062

Phone Number: $\qquad$ E-mail: $\qquad$

1. Are you in favor of the proposed Roadway Master Plan? Yes $\square$ No If no, why?
$\qquad$
$\qquad$
$\qquad$
2. Are you in favor of the proposed Trail/Bicycle Master Plan? $\square$ If no, why?
$\qquad$
$\qquad$
$\qquad$
3. Are you in favor of the proposed Transit Master Plan? $\square$ If no, why?
$\qquad$
$\qquad$
$\qquad$
4. Please list any comments, concerns, and/or suggestions you may have relating to the overall Transportation Master Plan.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## PLEASANT GROVE CITY <br> TRANSPORTATION MASTER PLAN

Please submit this comment form before leaving the meeting tonight, or mail your comments to PLEASANT GROVE CITY, 86 EAST 100 SOUTH, Pleasant Grove, UT 84062. You may also e-mail comments to dlewis@pgcity.org; all comments must be received by the City on or before May 28, 2009. We greatly appreciate your input and participation in this process.

Name:
Address: $\qquad$
City: $\qquad$ State: Zip: $\qquad$
Phone Number: $\qquad$ E-mail:

1. Are you in favor of the proposed Roadway Master Plan? Yes $\square$ No 圏 If no, why?

Totally opposed to "roundabouts" anywhere
2. Are you in favor of the proposed Trail/Bicycle Master Plan? Yes $\boldsymbol{N}^{\circ} \square$ If no, why?
3. Are you in favor of the proposed Transit Master Plan? Yes 圈 No If no, why?
4. Please list any comments, concerns, and/or suggestions you may have relating to the overall Transportation Master Plan.
 that stick out 12 ' into an other wive straight street.

Please submit this comment form before leaving the meeting tonight, or mail your comments to PLEASANT GROVE CITY, 86 EAST 100 SOUTH, Pleasant Grove, UT 84062. You may also e-mail comments to dlewis@pgcity.org; all comments must be received by the City on or before May 28, 2009. We greatly appreciate your input and participation in this process.
Name: EENT \& J ice WACKER
Address: 3065 NorTh 900 WEST
city: Pleasant Grove State: प_ Zip: 84062

Phone Number: 801-796-7974 E-mail: $\qquad$

1. Are you in favor of the proposed Roadway Master Plan? Yes No If no, why?
1.Hnevoy Bund. Doss not have this traffic cont to justify it as

A MANN ARTERIAL SIRET. THE SCHOOL AREA MILLION LEND ITSELF TO SPEEDS THAT oczur on such THOROपGH FARES.
 2. COMMUNIGES - ESPOCIANLYy in OUR APDA (CEDAR HULS/AMEREANFORL)
2. Are you in favor of the proposed Trail/Bicycle Master Plan? Yes, $\mathrm{No}_{\mathrm{o}} \square$ If no, why?
$\qquad$
$\qquad$
$\qquad$
3. Are you in favor of the proposed Transit Master Plan? Yes $\square \quad$ No $\square$ If no, why?

$\qquad$
$\qquad$
4. Please list any comments, concerns, and/or suggestions you may have relating to the overall Transportation Master Plan.
$\qquad$ TO MOVING TRAFFIC BUT THE 3 ON 2600 NORTH DINT MAKE ANY SENSE I (sWAM?)
4. In OUR AREA THE MAN TRAFFLC FLON SEENAS TO MOVE TO THE SOUTH 是 TO THO WOST. THE MASTOR PLAN DOES NOT AP APFORR TO TAKE THIS iTO CONSDDOEATION THERE ARB NO DESIHADLON NODES: OUR AREA EXCEPT AF. CANYON,
D THE GRID PLAN FROPOSED in NORTH P. Co. KTARES TO LOOK LIKB THE LAYOUT FOR OREM $\overline{B D}(4 C K)$ AND YOU WMK LOOSE ALL SONE

Please submit this comment form before leaving the meeting tonight, or mail your comments to PLEASANT GROVE CITY, 86 EAST 100 SOUTH, Pleasant Grove, UT 84062. You may also e-mail comments to dlewis@pgcity.org; all comments must be received by the City on or before May 28, 2009. We greatly appreciate your input and participation in this process.
Name: Dennis + Betty Zupan
Address: 3985 NV .900 C
City: $\qquad$ Pleasant rowe State: $\qquad$ Zip: $8406 ?$

Phone Number: $\qquad$ 801796.5361 E-mail: 6dzupan@yahoo.com

1. Are you in favor of the proposed Roadway Master Plan? Yes $\square$ No If no, why?

Thou many vomit about. Not cevodmated with the other City
$\qquad$
2. Are you in favor of the proposed Trail/Bicycle Master Plan? $\square$ If no, why?
$\qquad$
$\qquad$
$\qquad$
3. Are you in favor of the proposed Transit Master Plan? Yes No If no, why?
$\qquad$
$\qquad$
$\qquad$
4. Please list any comments, concerns, and/or suggestions you may have relating to the overall Transportation Master Plan. $\qquad$ 2600 N . - Thee vend abuints would be too much of a change, stewing down tratic on the best roada Signal light on 4000 N. $r$ ST.Rd. 146 or Canyon Red is not a good chaice-meve it south \& the Ceaderltills R). The Round about ot $4000 \mathrm{~N} .+9^{\text {th }} \mathrm{\omega}$ est is an overkill Then is not and can not be enough traffic to Just fy, it

| Last Name | First Name | Street | City | State | zip | Phone | Email | 1. Are you in favor of the proposed Roadway Master Plan? If no, why? | $\left.\right\|_{\text {2. Are you in favor of the proposed }} ^{\text {Trailicicycle Master Plan? If no, why? }}$ | 3. Are you in tavor of the proposed <br> Transit Master Plan? I Ino, why? | 4. Please list any additional comments, <br> concerns, and/or suggestions you may have <br> relating to the overall Transportation Master | Response |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Larsen | Lutie | 993 Wes | Pleasa | UT | 84062 | 801-785-5430 | Uutielarsen@mac.com | No/Somewhat think it is too much even with the growth we have had, things are much slower. I would like to see good basic road repair throughout. I am afraid the master plan wil lock the citizens into a situation where we are forced to participate. I am even more concerned about getting into a citizen vs city, scenario | Idont think the biki lanes are good in the streets. 1 think the should be located off road. | Yes |  | 1 \& 4 - The TMP is intended to be a dynamic document that will updated on a regular basis (every few years). The TMP is not intended to commit the City or its citizens to building specific improvements; however, it is intended to be used as a tool to assist the City as new development is built throughout the City. 2-There are certain safety concerns with bikes using roads with cars and trucks. However, streets are supposed to accommodate multiple modes of transportation, including bicycles. Properly designed on-street bike facilities, such as bike lanes and stre wide shoulders, are reasonable safe and allow bicyclists the opportunity to get around, which is their right. With proper signage, pavement markings, and other measures, the safety of the bicyclist can be maximized. |
| Potter | Heidi | West 4000 North | Peasant Grove | UT | 34062 | 01-822-6434 | heidigoose@hotmail.com |  |  |  |  | 1- Comment noted. Since the regional transportation master plan by MAG shows a need for an eastwest regional facility in this area, City will continue to work with MAG, UDOT, surrounding cities, and local residents to develop a solutions to the transportation needs in this area. The City has developed four alternatives that are being considered. For the time being, the City has not decided on a specific alternative and will continue to study the issues to appropriately address residents concerns. |
| Gorzalez | Mario | 1119 East 100 North | asant | UT | 84062 | 135-201-782 | ajamari@gmail.com |  |  |  |  | - Comment noted. |
| Levin | Debbie | 866 West 4000 North | ant | UT | 062 | -701-0440 | debilevin@hotmail.com | I think that the intersection at 900 West 4000 North is way to steep to have light. stuck! It is a very dangerous road to get onto. I think this road should be a one way road or dead end. |  |  | I will never agree to ever have our trees removed to widen the road. They are very historical over to widen the road. They are very historical over 150 years old. This would be a disaster to have this happen. Words can't describe what this would do to a lot of people. This is our little lane! Please leave us alone! | $1 \& 4$ - Comments noted. Since the regional transportation master plan by MAG shows a need for an eastwest regional facility in this area, City will continue to work with MAG, UDOT, surrounding itites, and local residents to develop a solutions to the transportation needs in this area. The city has developed four alternatives that are being considered. For the time being, the City has not decided on a specific alternative and will continue to study the issues to appropriately address residents concerns. |
| Ellott | Muriel | est 400 | Pleasant Grove | UT | 84062 | 785.564 | murielkelliotl@vahoo.com |  ( 9600 North or 3800 North PG) |  | I'm not sure - we already have bus stops close. | l've known it was coming for a long time. I think <br> there are ways that would not have such an impact <br> on so many people |  |
| Ruper | Wendy | Valle V View Drive | sant Grove | UT | 3062 | 01-796-7520 | wendy.rupper@gmail.com |  |  | Vishtul thinking tor 20 years in the future |  |  |


| Last Name | First Name | Street | city | State | zip | Phone | Email | 1. Are you in favor of the proposed <br> Roadway Master Plan? If no, why? | $\begin{aligned} & \text { 2. Are you in favor of the proposed } \\ & \text { Trail/Bicycle Master Plan? If no, why? } \end{aligned}$ | 3. Are you in favor of the proposed Transit Master Plan? If no, why? | 4. Please list any additional comments, concerns, and/or suggestions you may have relating to the overall Transportation Maste | Response |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Levin | red \& Trud | 3939 West 9600 North | edar Hills | UT | 84062 | 301-785-3356 | trudilevin@hotmail.com |  | There really is not enough access to the trails | It is almost impossible to use UTA because the steps are not convenient and too far apart and the time is not trequent enough to assist us in our travel | If 4000 North should be widened the street should be widened on either side. Again, the road south 4000 North is wide enough to accommodate the proposed | 1 \& 4 - Comments noted. Since the regional transportation master plan by MAG shows a need for an east/west regional facility in this area, City will continue to work with MAG, UDOT, surrounding cities in this area. The City has developed four alternatives that are being considered. For the time being, the City has not decided on a specific alternative and will continue to study the issues to appropriately address residents concerns. 3-It must be agreed that there is much to be desired about the current transit (bus) service in many parts of Utah County, including the Regional Transportation Plan that hopefully will meet the transit needs in both the long and short term. |
| Thompson | Jeff | onv | Pleasant Grove | UT | ${ }^{84062}$ |  |  |  |  |  | Love the idea of improving access to down town and making it more attractive. Roundabouts would be a nice touch. Like bike trails ect. as well. | 4-Comment noted. |
| Zullinger | Denn | 7 West 4000 | Pleasant Grove | UT | 84062 | 001-785-5991 | hull810@alpine.k12.ut.us | Houses on 4000 North are too close to the road if widened to t a 70 toot roado or to6 foot right of way nearly every hose on the road would need to be condenemed it would be better to have the original radd lian where the next road to the south is the 70 foot road. It's already that wide. | The trails look good, but there should be mor access into Mt. Mahogany from more points than just the Forest Service Trail | UTA is a joke. It serves only those along Stale stree.. Pleasant Grove shouldnt even participate unless they really seve our communtit. thice a d day |  | 18 - Comments noted. Since the regional transportation master plan by MAG shows a need for an east/west regional facility in this area, City will continue to work with MAG, UDOT, surrounding sities, and local residents to develop a solutions to the transportation needs in this area. The City has developed four alternatives that are being considered. For the time being, the City has not decided on a specific alternative and will continue to study the issues to appropriately address residents concerns. We agree with you that more access point Sevice lands and Manegny the is are needed to the Forest to your comment, the City has added more planned trailheads to the Draft Transportation Master Plan that would allow greater access to the natural areas east of the City. Starting from the Pleasant Grove/Lindon City boundary and working northward the planned trailheads are: Murdock Drive Trailhead, Murdock Estates Trailhead, Wade Springs Park Trailhead, Wadley Springs Trailhead, Manila Creek Trailhead, and Harvey Boulevard Traihead (Murdock Canal). The existing trailheads are: Kiwanis Park Trailhead, and Grove Creek Trailhead. 3 -As with the response made above to the Levin comment, the transit or bus service in Utan County generally, and Pleasant Grove specifically can and should be significantly improved. Plans call for Rapid Transit, and expansion of local circulator bus service within the nability of Pleasant Grove's residents to get around. |
| Levin | Raph | West 4000 North | Sant Gro | UT | 84062 | 701-0440 | Ralph-6444@hotmail.com |  |  |  | 4000 North needs to be a one way street going down hill only to elevate accidents, and the plan to put in a roundabout at the bottom of that hill would require removal of my 150 year old trees which WILL NOT HAPPEN!!! Over my dead body wil those trees be messed with - once again the solution is to make 4000 North a ONE WAY STREET or possibly a dead end street. | 1 \& 4 - Comments noted. Since the regional transportation master plan by MAG shows a need for an east/west regional facility in this area, City will continue to work with MAG, UDOT, surrounding cities, and local residents to develop a solutions to the transportation needs and local residen City has developed four alternatives that are being considered. For the time being, the City has not decided on a specific alternative and will continue to study the issues to appropriately address residents concerns. |
| Phelon | Kathyn | 1040 East 900 South | asant Grove | UT | 84062 | 01-785-3705 |  |  |  |  | When will you finish 1000 South between Locust and 1150 East? My property borders this road. Will have access to get onto this road from my back yard? and 1150 East? My property to get onto this road from my back yard? |  |
| Wise | Jim | 11 North 600 West | asant Grove | UT | 84062 |  |  | Totally opposed to "roundabouts" anywhere |  |  | 600 West needs to be widened at two properties at 2211 North that stick out 12 into an otherwise straight street. | aranted 4 -As development occurs along this roadway, developers will be responsible to widen this roadway and install curb \& gutter, park strips, and sidewalks. |
| Robinson | Randy \& Jan | 3945 North 900 West | Pleasant Grove | UT | 84062 | 801-785-224 | andyw.robinson@amail.com | too costly for the population to justify the cost - Get the developers figure it out when Wadley property is sold, and developed | Didn't see it - Sounds like a good idea - we have a fair amount of bicyclist people exercising on these back roads | The one in front of Lone Peak High School we are |  | 1 \& 4 - It is unclear to which part of the City you are referring. The cost of the recommended improvements will not be solely covered by the City. Impact Fees will be collected from developers and othe funds are available to the City to construct some of the that these improvements will be spreadout over atleast the next 20 to 30 years as land continues to be developed. 2-We agree with you that the development of bicycle and pedestrian facilities in the City is a good idea. |


| Last Name | Firs Name | Street | ${ }^{\text {city }}$ | State |  | Phone | Email |  | 2. Are you in favor of the proposed Trail/Bicycle Master Plan? If no, why? | 3. Are you in favor of the proposed Transit Master Plan? If no, why? | 4. Please list any additional comments, <br> concerns, and/or suggestions you may have <br> relating to the overall Transportation Master | Response |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Waker | Kent s Jill | 5 Noth 900 West | sant Give | UT | 3082 | $11^{1-768.7974}$ |  |  |  |  |  |  |
| Fox | Wade \& Kavee | 205 North 90 West | basan Girve | UT | 3406 | 01-796.3903 | wtox3903@msn.com | We disagree with the roundabouts proposal at 4000 North 900 West. There is not enough growth or traffic flow potential to ever support or justify a roundabout at that location. |  |  |  |  |
| zupan | Demins \& Bety | orth 900 West | Giove | UT |  | 96.5301 | an@evahoocom |  |  |  | The best way across the valley, East-West is 2600 North. Three roundabouts would be too much of change, slowing down traffic on the best road - A signal light on 4000 North and State Road 146 or to the Cedar Hills Road. The roundabouts at 4000 cannot be enough traffic to justify it. |  |

## Appendix E: Resolution \& Staff Report

## RESOLUTION NO. 2009-016

## A RESOLUTION AMENDING THE PLEASANT GROVE CITY TRANSPORTATION MASTER PLAN AS PROVIDED IN CHAPTER 5 OF THE PLEASANT GROVE CITY GENERAL PLAN, AND PROVIDING AN EFFECTIVE DATE.

WHEREAS, the transportation and circulation system of any community can be considered the framework of that community; and

WHEREAS, The City's goal is to have a good transportation system that provides quality circulation, regulates traffic appropriately, and that has vision for future growth; and

WHEREAS, concerns regarding transportation issues have increased as development has increased in the City of Pleasant Grove (the "City"); and

WHEREAS, to address said impacts and concerns, the City retained Horrocks Engineers Inc, to provide expert transportation consulting services and to assist in preparing an update of the Pleasant Grove City Transportation Master Plan; and

WHEREAS, the Mayor established a Transportation Master Plan Advisory Committee (the "Advisory Committee") to study transportation issues and work with Horrocks Engineers, Inc in preparing the Major Street Plan update; and

WHEREAS, Horrocks Engineers Inc, working with the Advisory Committee and City technical staff, prepared amendments to update the City's Transportation Master Plan; and

WHEREAS, on May 13, 2009 a public open house was held to review with the public the proposed amendments to the Transportation Master Plan and to receive input from the public on aspects of the amendments including:600 West alignment, 4000 North options, and 100 East widening.

WHEREAS, on June 23, 2009 the Pleasant Grove Planning Commission held a duly noticed public hearing to consider the proposed amendments of the City's Transportation Master Plan, and after such public hearing and upon considering the recommendation of Horrocks Engineers Inc, the Advisory Committee, and the public, the Planning Commission recommended that the City Council adopt the update of the Transportation Master Plan with amendments; and

WHEREAS, on June 23, 2009 the City Council held a duly noticed public hearing to consider the recommendation of the Planning Commission to update the Transportation Master Plan; and

WHEREAS, after considering the Planning Commission's recommendations, and the facts and comments presented to the City Council, the Council finds that the proposed update of the Pleasant Grove City Transportation Master Plan reasonably furthers the health, safety and
general welfare of the citizens of Pleasant Grove.
NOW, THEREFORE, BE IT RESOLVED by the City Council of Pleasant Grove City, Utah County, State of Utah, as follows:

SECTION 1. Chapter 5 "Transportation" of the Pleasant Grove City General Plan is hereby amended as shown on Exhibit "A" which is attached hereto and incorporated herein by this reference.

SECTION 2. SEVERABILITY. The sections, paragraphs, sentences, clauses, and phrases of this Resolution are severable. If any such section, paragraph, sentence, clause, or phrase shall be declared invalid or unconstitutional by the valid judgment or decree of a Court of competent jurisdiction, such invalidity or unconstitutionality shall not affect the validity or constitutionality of any of the remaining sections, paragraphs, sentences, clauses, or phrases of this Resolution.

SECTION 3. THIS RESOLUTION APPROVED and ADOPTED by the City Council of Pleasant Grove City, Utah County, Utah, this $23^{\text {rd }}$ day of June, 2009.


Michael W. Daniels, Mayor

ATTEST:
kAthy foreseer
Kathy T. Kresgser, City Recorder
(SEAL)


Utah's City of Trees
COMMUNITY DEVELOPMENT DEPARTMENT
86 East 100 South
Pleasant Grove, UT 84062
(801) 785-6057 Fax: (801) 785-5667
www.pgcity.org

# PLANNING COMMISSION \& CITY COUNCIL 

Agenda Item Number: 1

Issue: Public hearing to consider adoption of a Resolution regarding the adoption of the updated Pleasant Grove City Transportation Master Plan,<br>From: Degen Lewis<br>City Engineer<br>Applicant: Pleasant Grove City<br>Zoning: All zones

## BACKGROUND:

Over the last four months Pleasant Grove City has been working on an update to the transportation master plan. The current plan was adopted in 2001 and significant growth has occurred within the City since that time. The update anticipated a refinement of the current plan with no major changes expected. Growth and street expansion since 2001 needed to be accounted for in road maps and the Capital Facilities plan. Staff has also noted a need for formal guidance and standards on access management for roads classified at collector level or higher. There was also a desire to include several road realignments that the City has considered at various times in the past. Need for these changes appears greater now and staff wanted them formally included in the plan so that development can be appropriately directed to accommodate the anticipated changes.

A draft of the plan was presented for review by the public at an Open House on May 13, 2009. The comments were generally positive. The most common concerns verbalized that evening focused on how Canyon Road was accessed from 4000 North. This area is more specifically addressed later. Written comments on the proposed plan update are included in an appendix in the final document along with a summary of these comments and how they were addressed in the plan.

The revised Pleasant Grove City Transportation Master Plan update includes:
(1) Amendment of the text of the Plan in its entirety. Most sections were expanded in scope and detail. The areas of access management and future street layout planning have had significant expansion. A discussion of traffic calming measures has been added. Trail and alternative transportation (non automobile) modes are discussed more fully.
(2) Amendment of the Street Master Plan Map. The Street Master Plan Map has been expanded in the information shown.

## Local Street Vicinity Map

City ordinance requires the Planning Commission not only to adopt and maintain a Major Street Plan but also to adopt and maintain a vicinity map for the long range planning of local streets. Potential local streets are now shown on the Roadway Master Plan Map. The map is subdivided into a more detailed view in figures 8-10.

Roadway Realignments Or New Connections
There are several locations throughout the City where roads that need realignment or new connections to provide better long term traffic flow. They include:

- Shift of 1300 West (Proctor Lane) at 700 North in Lindon to reestablish the connectivity of Proctor lane south toward Utah Lake.
- Shift of 600 West and Center Street north of State Street so that 600 West connects directly with State Street and Center Street connects to 600 West to the north.
- Shift of 100 East and Geneva Road so that the two streets meet in a single intersection at State Street. This also includes a disconnection of Main Street from State Street.
- Shift of Murdock Drive east of 1500 East to the south so that it lines up with 1000 South. The existing Murdock Drive would disconnect from 1500 East but still service all homes along the street.
- Shift of 200 South and 220 South to align with each other and cross State Street at a right angle. Currently being accomplished through UDOT's project to widen State Street.
- Shift or 2600 North to the north as it connects to Canyon Road so that the intersection is squared up and widened to improve safety.
- New connection between Garden Drive and State Street at approximately 1000 West.
Intersection Improvements
The map now includes information regarding the type of traffic control ultimately needed at certain locations (primarily the intersections of collectors and arterials). Signals are shown where traffic volumes are anticipated to grow to levels that will meet the standards for traffic signals. Roundabouts (traffic circles) are shown at intersections where expected traffic demand will exceed the ability of a multi-way stop to handle but where a traffic signal would be unwarranted.

There are several routes where the expansion needed has changed from the previous plan and maps. Streets previously identified for expansion in the previous plan which no longer need expansion or the required expansion is less than previously forecast are listed below:

- 2600 North will function adequately as a three lane collector rather than a five lane arterial.
- 1100 North will function adequately as a three lane collector rather than a five lane arterial.
- 220 South from Pleasant Grove Boulevard to State Street and 200 South from State Street and Main Street will function adequately as a three lane collector rather than a five lane arterial.
- Center Street can be reduced from a five lane arterial to a three lane collector (road diet) and still convey the anticipated traffic. This may allow for additional park, trail, open space, or parking options along this portion of Center Street.

One street, 100 East from State Street to 1100 North was previously identified as a three lane collector, but is not expected to function at an acceptable level unless expanded to a five lane width. 100 East north of 1100 North had previously been identified as a five lane arterial.
(3) Amendment and/or inclusion of other Transportation Master Plan Maps, to include: 1) Roadway Functional Classifications Map, 2) Bicycle \& Pedestrian Facilities Map, 3) Future Transit Plans Map, 4) Signal Inventory Map, 5) Transportation Improvement Program Map.
(4) Additional illustrations of potential roadway cross-sections, including a new class of road called residential sub-local which is narrower than a standard residential street. There are specific guidelines as to where these roads would be allowed.

## DISCUSSION:

There is one area where staff desires specific guidance. This is the plan for improvements to 4000 North. This area generated the bulk of the written comment on the draft plan. Due to the feedback a separate discussion of this area and possible alternatives are listed in Chapter Five (see pages 48-50).

From an engineering point of view the option shown in the current transportation master plan is not recommended as it expects motorists to use a longer route with required left and right turns at an additional intersection while a more direct route exists. Experience indicates that motorists will use to most direct route (from a travel time standpoint). The option to widen 4000 North as shown in figure 17 is first recommended option. Widening 4000 North to a collector width will likely move the roadway within the standard setback for some homes and would be a significant change from the historical roadway. However, even installing a standard residential street would be a significant change from the current street.

A second alternative to provide a direct connection to Canyon Road would be to swing 4000 North south to line up with Monson Drive. This option would also remove the turns at the intersections and the realignment would take place on largely undeveloped land. There would be one home on 900 West that would need to be removed to make the new connection to the west. This option would also require Cedar Hills to modify their plans for 9600 North which would include reconstruction and abandonment of already completed collector status road improvements.

A third alternative is to continue with offset route as illustrated in the current plan. It will likely create congestion that would otherwise be avoided in the previous options and it is unusual to offset a collector roadway for such a short distance.

A fourth option of "Do Nothing" is outlined in the document but since option three above has previously been adopted by the City it is not really an option.

## RECOMMENDATION:

Due to tonight's joint meeting, there are two actions needed. The Planning Commission needs to make a recommendation to approve / disapprove the proposed plan along with any recommended changes to the final document. After this the City Council needs approve / disapprove the final document along with any changes required.

Staff recommends approval of the updated Pleasant Grove City Transportation Master Plan, based upon the following findings:

1. The process to update the Transportation Master Plan has been provided good opportunity for input from the public, staff, and the Planning Commission.
2. The updated Transportation Master Plan is consistent with the City's goals as represented in the General Plan.

## CITY COUNCIL -

Based on the recommendations given in the forgoing action of the Planning Commission regarding the revised Transportation Master Plan and based on the above and other findings listed by the Commission, Staff recommends adoption of the resolution adopting the 2009 Pleasant Grove City Transportation Master Plan.

## MODEL MOTION:

## PLANNING COMMISSION -

Sample Motion for Approval - "I move the Commission to forward a positive recommendation to the City Council to approve the proposed 2009 Pleasant Grove City Transportation Master Plan, including the maps and exhibits therein, as attached.

List any additional findings....
Sample Motion for Denial - "I move the Commission to forward a recommendation to the City Council to deny the proposed 2009 Pleasant Grove City Transportation Master Plan, based on the following findings:"

List findings for denial....

## CITY COUNCIL -

Sample Motion for Approval - "I move we adopt the Resolution \# $\qquad$ adopting the adopting the 2009 Pleasant Grove City Transportation Master Plan, including the maps and exhibits therein, as attached.

List any additional findings....
Sample Motion for Denial - "I move we deny Resolution \# $\qquad$ adopting the proposed 2009 Pleasant Grove City Transportation Master Plan, based on the following findings:"

List findings for denial....


[^0]:    ${ }^{1}$ Miscellaneous local roads have not been included since they will most likely be built by developers as part of their developments.
    ${ }^{2}$ Potential Funding Sources: F-Federal, S-State, C-City, and O-Other.

[^1]:    SR-89 5/14/2007 2008 Existing Conditions
    6/12/2009
    6/12/2009
    Synchro 7 - Repor

[^2]:    SR-89 5/14/2007 2008 Existing Conditions
    6/12/2009
    Synchro 7 - Repor
    Page 4

[^3]:    SR-89 5/14/2007 2008 Existing Conditions
    6/12/2009
    Synchro 7 - Repor
    Page 8

[^4]:    SR-89 5/14/2007 2008 Existing Conditions
    6/12/2009

[^5]:    SR-89 5/14/2007 2008 Existing Conditions
    6/12/2009
    6/12/2009
    Synchro 7 - Repor
    Page 12

[^6]:    SR-89 5/14/2007 2008 Existing Conditions
    6/12/2009

[^7]:    SR-89 5/14/2007 2008 Existing Conditions
    6/12/2009
    6/12/2009

[^8]:    SR-89 5/14/2007 2008 Existing Conditions
    6/12/2009
    6/12/2009
    Synchro 7 - Report
    Page 20

[^9]:    SR-89 5/14/2007 2008 Existing Conditions
    6/12/2009
    Synchro 7 - Repor
    Page 22

[^10]:    SR-89 5/14/2007 2008 Existing Conditions
    6/12/2009
    Synchro 7 - Report
    Page 24

[^11]:    SR-89 5/14/2007 2008 Existing Conditions
    6/12/2009
    Synchro 7 - Repor
    Page 28

[^12]:    SR－89 5／14／2007 2008 Existing Conditions
    6／12／2009
    Synchro 7 －Report
    Page 3

[^13]:    SR-89 5/14/2007 2008 Existing Conditions
    6/12/2009

[^14]:    SR-89 5/14/2007 2008 Existing Conditions
    6/12/2009

[^15]:    SR-89 5/14/2007 2008 Existing Conditions
    6/12/2009

[^16]:    SR-89 5/14/2007 2008 Existing Conditions
    6/12/2009
    6/12/2009
    Synchro 7 - Repor
    Page 11

[^17]:    SR-89 5/14/2007 2008 Existing Conditions
    6/12/2009
    Synchro 7 - Repor
    Page 13

[^18]:    SR-89 5/14/2007 2008 Existing Conditions
    6/12/2009
    Synchro 7 - Repor
    Page 15

[^19]:    SR-89 5/14/2007 2008 Existing Conditions
    6/12/2009
    6/12/2009
    Synchro 7 - Report
    Page 19

[^20]:    SR-89 5/14/2007 2008 Existing Conditions
    6/12/2009
    Synchro 7 - Repor
    Page 23

[^21]:    SR-89 5/14/2007 2008 Existing Conditions
    6/12/2009
    6/12/2009
    Synchro 7 - Repor
    Page 25

[^22]:    SR-89 5/14/2007 2008 Existing Conditions
    6/12/2009

[^23]:    *Distances in table are measured from center to center of driveway. Note: Values are based on TRB Access Management Guidelines.

[^24]:    * Based on a spillback rate of 15\% from TRB Access Management Manual

[^25]:    SENIOR NEWS
    Senior Citizen News for May
    Every Tues @ 10.30 AM Free Bingo
    Every Thur @ 1.00 PM Free Movie
    Friday, May 1, 12 noon. Presentation on upcoming tour to Hawaii
    Wed, May 6th Free Blood Pressure / Blood Sugar Clinic Fri, May 8th Life Screening Pre-registration Call 1-800-6795192
    Wed, May 20th Wendover Out-N-Back \$20.00 Call for reservations 801-785-2818

